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Abstract 

The game of Ms. Pac-Man was first released in 1981. It has since been recognised by 

academics as an interesting test-bed for developing AI that is capable of playing against a 

stochastic opponent. As such, numerous journals have been published to the World Congress 

of Computational Intelligence in Games demonstrating various methods of producing 

competitive AI. Within our paper we aim to determine whether an agent with a hard-coded 

strategy applied with heuristic simulations, is capable of producing a high-scoring AI than 

those previously demonstrated. 
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1. Introduction 

The game of Pac-Man was first released in arcades 

during the 1980s and featured Pac-Man himself, along 

with 4 enemy ghosts called; Blinky, Pinky, Blue and 

Clyde. The objective of the game was simple in that the 

player had to avoid (or consume) the 4 ghosts whilst also 

collecting all the pills within the maze. Should the player 

have consumed a power-pill found inside the maze, the 

ghosts would become edible for a short period of time. 

Upon consumption of a ghost the player would score a 

larger bonus than they would from a normal pill and the 

ghost would then return to the maze in an immortal state. 

Once the player consumed all the pills within the maze, 

the level would change layout and the game would then become progressively harder, 

increasing the speed of the ghosts and decreasing the time in which the ghost were edible 

(Galván-López et al., 2010). Shortly after the release of Pac-Man, Ms. Pac-Man was released 

as a sequel to the game and contained identical gameplay mechanics however the enemy 

ghosts portrayed distinct behavioural differences from the previous version. The main 

difference was that the ghosts within the first game were deterministic and for the most part 

considered predictable (Pittman, 2011). Instead, in the game of Ms Pac-Man not only was 

Clyde renamed to Sue, but the artificial intelligence (AI) behind the ghosts became 

unpredictable and for the most part demonstrated stochastic (random) behaviour (Galván-

López et al., 2010).  

The stochastic nature of the ghosts soon became an interesting problem space for academics 

when the first publications emerged demonstrating this was by (Koza, 1992). They detailed 

that Ms. Pac-Man was one of the possible test beds when it came to applying genetic 

programming within games. Since then, the conference on Computer Intelligence of Games 

(CIG) has been conducting a competition to apply various methods of agent behaviour and 

implementation to determine which outputs the most optimal score.  

Recent papers on the topic of developing high-scoring agents for Ms. Pac-Man mention the 

usage of a new method of predicting future game states based on recursive random 

simulations using a tree-based structure such as the Monte-Carlo Tree Search algorithm. One 

of the first academic journals presenting the idea was (Robles and Lucas, 2009) , in which 

Figure 1 - A screenshot of the game on the 

first level 
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they demonstrate a simple tree search structure for determining the reward from future game 

states at each junction within the maze. From the results of their research they demonstrate 

positive results and a good premise for extending such an idea. Furthermore we have begun to 

see promising results from the likes of rule-based fixed-strategy agents such as ICE Pambush 

3 (Thawonmas and Ashida, 2010), of which won the CIG Ms. Pac-Man competition in 2009. 

In this paper, we aim to determine whether it is considered possible to achieve a high scoring 

agent (AI) when applying the best-first search heuristics of the Monte-Carlo Tree Search 

(MCTS) algorithm along with fixed state-based strategies. Considering the research that has 

been conducted previously regarding the two respective areas of Ms. Pac-Man AI, we feel 

that by developing a finely tuned hybrid can produce competitive results in comparison to the 

other entrants of the same competition. As of yet, we have yet to see such an agent that makes 

use of a heuristic search method while implementing fixed hand-coded strategies. We believe 

that by directing the usage of such methods by applying certain tactics means that we can 

create an optimal agent within the game of Ms. Pac-Man. 

1.1 Aims & Objectives 

After reviewing an array of relevant academic and non-academic articles, we have come to 

decide that the aims of our research are; 

• Apply an optimized form of a heuristic based best-first tree search and combine the 

return values with hand-coded rules (Finite State Machine). 

• Conclude whether the utilisation of hand-coded conditions through the means of a 

finite state machine is preferable to high-level heuristic decision making. 

• Determine if the computational cost of implementing such an algorithm can be 

reduced, enabling for more competent AI within games of high branching moves. 

• Produce a high scoring agent within the game of Ms. Pac-Man  

o The agent should be capable of at least proceeding onto the next level.  

o The agent should also, on average, produce better results than other rule-based 

look-ahead agents that have entered the IEEE CIG conference in previous 

years (refer to Literature Review). 
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2. Literature Review 

In recent years, academics have been coming together annually for the competition known as 

the Ms. Pac-Man AI Competition held at the IEEE Computer Intelligence and Games 

Conference (CIG). The competition organised and moderated by Philipp Rohlfshagen, David 

Robles and Simon Lucas from the University of Essex involves contestants to designing AI 

controllers to play the classic arcade game of Ms. Pacman. Consequently due to the 

unpredictable nature of the enemy ghosts, it has proven to be a challenging test-bed for agent 

behaviour, and as such has become the basis of the competition. 

The goal of the competition is develop a high-score agent using any AI methodologies 

necessary (Robles and Lucas, 2009). Most noticeably there have been attempts to use methods 

such as neural networks (Gallagher and Ledwich, 2007) with temporal difference learning (De 

Bonet, 2006), fuzzy systems (Handa and Isozaki, 2008) and population based incremental 

learning (Gallagher and Ryan, 2003). This has meant that numerous publications have been 

made in regards to how to approach the random behaviour of the opponent and when to 

prioritise the rewards within the game to gain the highest possible score. 

Within our literature review we aim to demonstrate the current research in regards to agents 

that use finite state machines and event driven behaviour, as well as heuristic based best-first 

search algorithms such as Monte-Carlo Tree Search. Additionally we aim to determine the 

most effective methods of applying these kinds of behaviour, and what has been proven as 

successful in previous conferences and academic journals. 

2.1 Methods of agent implementation 

To date, there have been various methods of agent implementation that use certain methods of 

game simulation for the purpose of executing AI behaviour. At the IEEE CIG 2009 

conference, it was displayed that most agents utilized the likes of screen-scraping interfaces 

for enabling agent controllers to behave. In addition academics have used simulators to gain 

further control over the game to better determine how agent behaviour alternates when certain 

factors are removed from the game. 

2.1.1 Screen Capturing 

Utilising the original Microsoft Ms. Pacman Revenge of the Arcade game software, screen 

capturing involves the intercepting the graphics buffer of the computer’s screen. Afterwards it 

is then analysed remotely by another piece of software controlling the AI controller for the 

player. A grid based layout is typically generated from the image that is taken from the buffer, 
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and then further used to determine the next moves by the artificial controller (Fitzgerald and 

Congdon, 2009). The reason for this is so that the game state can be discretised by the 

software so that the agent controller can observe a set of perfect information for the given 

state. 

(Robles and Lucas, 2009) discuss this with their agent implementation and determine that on 

average there is an 80 millisecond delay between image processing and game state 

recognition. A timeframe that, considering the movement speed at which Pacman is going is 

quite considerable as the agent requires time to compute a decision. The agent in this case is a 

separate process operating on top of the original software which means that it’s running in a 

completely different thread.  This means that providing that the screen capture adapter is 

accurate or even fast enough, it could cause for the agent to miss junctions within the levels 

maze environment (Tong and Sung, 2010). Within the game of Ms. Pac-Man we consider a 

junction to be a point in the maze in which Ms. Pac-Man is able to go in more than or equal to 

3 possible directions. 

(Fitzgerald and Congdon, 2009) refactored the original code by Simon Lucas in an effort to 

reduce this latency. This was achieved by ignoring certain features of the maze such as walls 

during the processing of the graphics buffer. Considering that their implementation simply 

requires that the controller return the intended direction, it’s more efficient to discretise the 

game as a graph of nodes. They do go on to mention that there are some limitations with the 

usage of screen capturing. For example; should a ghost be hovering on top of a pill within the 

game state, then during the period in which the image is parsed, it will be close to impossible 

to recognise that the ghost is on a pill. This is troublesome, however it is possible to prevent 

this by storing information from previous screen captures and aggregating them into a single 

set of data (Fitzgerald and Congdon, 2009). Pursuing this option does mean that agent is able 

to obtain the most accurate score within the game; however it loses valuable time that could 

otherwise be used for expensive algorithm calls on the CPU required to determine the 

decisions of the AI agent.  

2.1.2 Simulator 

The usage of a simulator enables for larger control of how AI agents can be implemented, 

however it causes there to be larger inaccuracies in how the actual game is represented as 

well. Notably (Fitzgerald and Congdon, 2009) mention that using a simulator simplifies the 

task somewhat as it offers the AI agent direct access to the game state include the behaviour 

of the enemy ghosts. This is concluded through the demonstration of using the Monte Carlo 
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Tree Search (MCTS) algorithm as referred to in section 2.2, due to the probabilities required 

in determining the behaviour of the ghosts and additionally if we were to refer back to the 

problems noted in the previous section. If the AI agent has direct access to the values that are 

being used to determine the ghost’s next moves, it means that it will be able to generate a 

much more accurate simulation and measurement of the danger of adjacent ghosts.  

On the other hand, using a simulator in this regard can enable for further analysis of certain 

agent states, considering we will be able to get a data set for the game state that is recognised 

to be perfect information. Through this we can gain a further understanding as to how the 

agent performs when interacting solely with a configurable amount of ghosts within the game 

environment (Gallagher and Ryan, 2003).  

The usage of a simulator-based test bed additionally causes lack of accuracy from the scoring 

output considering that the rules can be modified in accordance to however the authors feel 

that it’s best. For instance, the speed at which Ms. Pac-Man travels through the maze when 

energised on a power-pill, and for how long the player remains energised for can be modified 

freely causing for variations on the game. It was noted by (Samothrakis et al., 2011) that the 

speed in which Ms. Pac-Man traverses was altered slightly to match that of the ghosts in the 

maze, and no life was given at 10,000 points. In essence, it simply means that it would be 

hard to compare the results generated from our own implementation directly with similar 

agents due to the variation in environments. 

From a performance perspective however, utilising a simulator means that it doesn’t suffer 

from the same problems that screen scraping would, in that turnings at intersections within the 

maze could never be missed by the functionality of the controller. However, considering that 

the agent would be operating on the same thread as the simulator, it would then mean that 

instead the MCTS algorithm would block the updating and rendering of the game due to its 

CPU expensive nature. 
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2.2 Monte Carlo Tree-Search 

“Monte Carlo Tree Search MCTS is a method for finding optimal decisions in a given 

domain by taking random samples in the decision space and building a search tree 

according to the results.” 

(Browne et al., 2012) 

 

Figure 2 - The simulation of the play out and the selection of a child node. (Pepels and Winands, 2012) 

Originating from a collection of methods noted as the “Monte-Carlo methods”, of which were 

typically used in statistical physics, they have also began to be used within the likes of games 

too. Demonstrating world-class levels of play in the likes of Scrabble and Bridge (Browne et 

al., 2012), the Monte-Carlo methods rely on repeated random sampling to compute the result 

of a given game state. Deriving from this idea, the Monte-Carlo Tree Search (MCTS) 

algorithm operates under the idea of two main concepts in that the true value of an action (a 

node within the tree) can be approximated by using random simulation recursively. The X 

amount of times in which the simulations will recursively cycle can vary on the 

implementation. Based on previous publications, it can be concluded that the simulation of 

the generated tree will finish based by a computational budget (typically memory or time 

constraint) or a maximum iteration constraint (Browne et al., 2012). Considering the large 

range in power between modern CPUs, it would be preferable to adjust the simulation time 

based on a computational budget. This form of constraint is more flexible, as the controller 

will determine how long it has taken to generate the MCTS search tree. From there, the 

controller will determine whether the computer is capable of doing more simulations within 

the initial provided time constraint (Browne et al., 2012). It is stated by (Samothrakis et al., 

2011) that it takes approximately half a second (500 milliseconds) to perform 400 
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simulations, however (Pepels and Winands, 2012) demonstrate that it’s possible to produce an 

even higher amount within less than 100 milliseconds. 

The generated tree is then used to estimate future game states at different parts of the nodes, 

whilst continuing on the game state from the parent node in the tree (Browne et al., 2012). To 

date, this algorithm has set a precedent in enabling computers to compete with players within 

games that have high branching decision making factors. Examples of this are demonstrated 

by games such as Go and Scrabble, of which have imperfect information, instances where 

information is partially visible to the agent that is generated a decision. 

Similarly we can see this being applied to Ms. Pac-Man 

considering the previously mentioned stochastic behaviour 

of the ghosts in the game. The random simulation and 

reward evaluation enables for us to better determine what 

would be the optimal path to take when the agent arrives at 

a junction within the maze. We consider each junction 

within the maze to be a branching point for decision 

evaluation with the tree of the MCTS algorithm as 

demonstrated in Fig. 3. Through this algorithm, the Ms. 

Pac-Man agent is able to simulate future game states 

without being required to determine the moves of the 

ghosts based on its previous actions. Instead, through 

random simulation and an appropriate evaluation of a generated tree, we can determine the 

safest route based on the current position of the agent. The evaluation however of which 

generated branch of the tree to take can vary based on the goal that we are trying to aim for 

and furthermore the structure of the tree that we are using. 

2.2.1 Multi-armed bandit problem 

The MCTS algorithm has been combined with the usage of bandit-based methods to best 

evaluate the optimal set of actions to use within a game based on the generated tree. 

Considered as the multi-armed bandit problem, the MCTS algorithm is presented as having k 

set of arms in possible decisions that can be made by the controller (Browne et al., 2012). 

As demonstrated by (Auer et al., 2002), the UCB1 (Upper Confidence Bound) formula can be 

applied to a node within a tree to generate a random score that is then recursively back-

propagated from the leaf of the tree (i.e. a node with no children) to its predecessor. This 

Figure 3 - Branching decision points 

within the maze used for MCTS 

evaluation. The blue circle represents 

the position of Ms. Pac-Man. (Ikehata 

and Ito, 2011) 
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score is then utilised to determine the reward of the branch, which within context to Ms. Pac-

Man would be considered as a path within the maze. 

 

Figure 4 – The UCB1 formula used for evaluating tree nodes as demonstrated by (Auer et al., 2002) 

Referring to Fig. 4, T is considered the visit or “sample count” in which determines how many 

samples are to be generated before the node is considered as “exhausted”. Once a node is 

considered as exhausted, it then means that it is ready to be expanded and then extend the tree 

at that given point. The log natural is then applied on the right part of the algorithm to enable 

the exploration of less visited nodes within the tree’s structure during the evaluation period of 

the tree (Pepels and Winands, 2012). 

This formula is used within bandit-based sequential decision-making problems in which the 

choice between exploitation moves we know already to be profitable, versus unexplored 

moves has to be balanced appropriately when a decision has to be made across k certain 

amount of nodes. This is typically called the exploitation and exploration dilemma (Browne et 

al., 2012). In context to the method of our implementation, the sample count is used to 

determine whether or not we choose to expand the children of the node that we are currently 

looking at. 

(Samothrakis et al., 2011) mention within with their research that using the UCB-Tuned 

formula (Auer et al., 2002) for evaluating nodes displays optimal results with their chosen 

structure of the MCTS algorithm. They indicate that by applying the UCB-tuned formula with 

a min-max based MCTS tree, a structure that is preferable to games with perfect information, 

that it displays results which were preferable in comparison to the previously introduced 

UCB1. The results provided in (Samothrakis et al., 2011)  demonstrate that when utilising the 

UCB-tuned formula, the game score consistently tends to be higher when the depth of the 

search tree is higher and the simulation threshold (i.e. amount of times a child node is 

simulated) is anywhere between 200 and 350. Whereas in comparison to when the UCB1 

node evaluation formula is used, it’s recognised that there is a large inconsistency in 

performance when both simulation and tree depth is higher. Consequently it would be 

worthwhile running our experiments with either formula to determine if they affect score 
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outputs when combined with the idea of utilising state-based strategies mentioned in section 

2.6. 

Refer to Fig. 5 to understand the algorithm in question. 

 

Figure 5 – The UCB-tuned algorithm as demonstrated by (Samothrakis et al., 2011) 

Within the diagram; n is the sample size of parent node, Xi is the sample score of the child 

node of the one that we are looking at within the tree, nj is the sample size (or visit count) of 

the parent node the one that we are observing within the tree. 

2.2.3 Ms. Pac-Man MCTS implementations 

Rather than observing the current game state the agent is operating within (i.e. rule based 

look-ahead), MCTS approaches the problem of determining optimal future game states. This 

is achieved by simulating them based on a set of probabilities used to approximate ghost 

behaviour during the game (Ikehata and Ito, 2011). From this we can then determine the 

rewarding output for the newly simulated game state. 

This is demonstrated in (Ikehata and Ito, 2011) by simplifying the rules of movement that are 

used for the ghosts. A level of probability is used for determining the aggressiveness of each 

of the ghosts within the game to determining their actions for each simulation. They note also 

that due to the expensive nature of the heuristics, they calculate path simulations at each 

intersection or turn within the maze environment. This is done instead of computing at each 

grid space on the tunnels between intersections as it would otherwise be too computationally 

expensive. 

Applying a more static and strategic approach, (Ikehata and Ito, 2011) utilize certain tactics to 

determine how their UCT (Upper Confidence Tree) generated from algorithm would be best 

suited to avoidance or eating of ghosts (Ikehata and Ito, 2011). There is, however, no mention 

of implementing an ambush strategy for the ghosts, a strategy that consists of luring the 

ghosts adjacent to the pill so that when the pill is consumed the agent can quickly eat the 

enemy ghosts. 
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This is a strategy that is utilized by the likes of ICE Pambush 3 (Thawonmas and Ashida, 

2010), a rule-based agent  that was compared against Ikehata and Ito’s MCTS-driven 

approach (Ikehata and Ito, 2011). Notably, their agent approaches avoidance by being wary of 

pincer moves from the enemy ghost. A move in which the Ms. Pac-Man agent is unable to 

find a path to escape with as the team of ghosts have surrounded the agent. 

The MCTS agent demonstrated by (Ikehata and Ito, 2011) displays a method of restricting 

tree growth based on a variable rather than a maximum path, cost which is something that 

(Pepels and Winands, 2012) choose to implement in their MCTS-based agent. Restricting the 

growth of the tree based on the path cost of each branch could be considered worthwhile 

considering moves are only decided at junctions in the maze. Should a ghost decide to change 

their direction randomly (of which they are perfectly capable of doing) midway through a Ms. 

Pac-Man’s traversal of a long C-Path, then it could invalidate their previous choice to move 

down that path. Based on that notion this then could be considered understandable due to how 

the agent in (Pepels and Winands, 2012) will not reverse on itself midway of the traversal 

through a c-path. 

Furthermore, during the evaluation of the nodes 

within their agents MCTS search tree, (Ikehata 

and Ito, 2011) comment on the idea of using a 

danger map to influence the reward values of 

tree branches. Referring to Fig. 4, the areas 

highlighted in red are considered as more 

dangerous due to higher probability in which a 

pincer move would occur as there are less 

possible routes out of the areas highlighted in 

red. This is a valid idea considering that while 

the ghosts may adhere to stochastic behaviour, 

the possibility for them to form a pincer move is still there. Therefore prioritising other c-

paths within the maze before approaching the ones that are considered more dangerous right 

at the beginning would be an applicable move. However, should we desire to use this method 

of node evaluation with the likes of an Ambush strategy stated in section 2.6, it would mean 

that there’d be a higher chance that we neglect power pills in the maze due to them being 

positioned within the 4 corners of the maze.   

Figure 6 - Danger map of the first maze within Ms. 

Pac-Man (Ikehata and Ito, 2011) 
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While they approach the usage of a heuristics algorithm such as MCTS from a similar angle 

that we intend, we still feel they are still are missing a few key areas and applying the 

algorithm in circumstances that we don’t believe are necessary. For instance, the same 

heuristic algorithm doesn’t appear to be used when they are searching for the remaining pills 

within the maze. If this were the case with our implementation, then we would have to 

consider extending the expansion threshold so that the tree could reach the next set of pills. 

2.2.4 Endgame approaches 

The endgame can be defined as the state in the game in which the Ms. Pac-Man agent must 

eat the fewest remaining pills within the level. This alternates from the beginning of the game 

considering that the agent would have the alternative choice of simply eating all of the power 

pills. Upon eating the remaining pills, the maze will change onto the next level (Tong et al., 

2011). 

Notably MCTS works very well in evaluating and 

determining the most appropriate set of low level 

actions to take (i.e. direction in which the agent should 

go in) within the area of the tree-search threshold. 

However, the search tree begins to fail when the agent 

fails to find any pills within the branches of the search 

tree due the agent beginning to progress towards the end 

of the game and there being a smaller count of pills 

remaining. Demonstrated in in Fig. 3, the simulated 

game states at each branch return a value of 0 due to 

there being no increase in score when the controller was 

simulated at such a given point in the tree. 

Another tactic or state is required to target pills that might be outside of the area of the agent. 

Rather than expanding the branch generation threshold for the heuristic algorithm. (Tong et 

al., 2011) approached this through simply generating the shortest linear path to the remaining 

pills in the game. Their implementation utilises pre-computed path costs through a simple 

path algorithm, a path that does not go back on it itself or visit any path nodes twice. From 

this they are able to directly determine the nearest node that contains pills and then determine 

if the target location for the agent is safe enough by evaluating the generated path frequently 

through Monte-Carlo path testing. 

Figure 7 - Ms. Pacman can't find a suitable 

path to take as the paths are returning with 

a 0 reward due to lack of adjacent pills. 
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This is a valid and less computationally expensive approach than simply expanding the 

threshold of tree simulations. The reason for this is that it enables Pac-Man traverse to the 

other size of the maze without having to perform expensive heuristics to find few remaining 

pills within the remaining environment. This limitation of a pure MCTS approach is again 

demonstrated by (Samothrakis et al., 2011), who demonstrate that in able to ensure that a 

calculation can be performed within a 50-60ms time frame, a tree depth value must be 

enforced. Providing the agent with a linear path to remaining cells in the maze then becomes 

an appropriate idea given the limited computation time preventing us from extending the tree 

expansion further. 

Taking this all into account, we believe that with the implementation of the MCTS algorithm 

we would have to take two conditions into account during the runtime of the game. The first 

being the amount of pills available within the level (if there are only X amount left, change 

state), and the second being the scoring output that is being returned from the search tree. 

(Pepels and Winands, 2012) additionally state within their agent implementation that a viable 

condition for changing to an End Game tactic would be by responding to a condition 

regarding the time that has passed within the game. While we think that this is an interesting 

idea, it would be better applied if we timed the period in which Ms. Pac-Man consistently 

received a maximum score of 0 from the children of the search tree and then switching to the 

End Game state. Moreover, should the agent become astray from the nearest pills in the maze 

then a distance condition should be met that enforces the End Game strategy also. 

2.2.5 Other approaches 

Rather than determining the outcome of future game states, other methods have been 

approached by academics such as the idea of using evolution strategies. The premise of an 

evolutionary algorithm is that the agent will inductively learn about the surrounding 

environment. From this information it will make appropriate decisions based on trial and 

error. The information that has been learned about the given game state is then applied 

through fixed parameter based strategies (Galván-López et al., 2010) or weighted neural 

networks. (Gallagher and Ryan, 2003) demonstrate the idea of implementing a method of 

evolutionary learning and base their agents actions similar to that of a human player. Through 

this, their research consists of developing a controller that learns inductively to play Ms. Pac-

Man. 

While a choice such as this might be preferable for short-term moves within a certain area, 

considering the volatility in move choices by the ghosts within the game, it could be 
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considered impractical due to the stochastic nature of the AI. (Gallagher and Ryan, 2003) 

comment on the idea of generating a long sequence of moves being a bad idea considering the 

volatility of the game state and the general behaviour of the ghosts. Although inadvertent, this 

statement could be in contrast to the idea of implementing a more heuristics method of using 

Monte-Carlo Tree Search considering the stochastic nature. 

(Gallagher and Ledwich, 2007) implement a neural network (ANN) with a form of an 

evolution strategy to optimise the way that the agent responds to the maze. The four outputs 

of the ANN are the four possible directions that the Ms. Pac-Man agent can move within the 

maze, where the inputs to the network is surrounding information to the current position of 

Ms. Pac-Man within the game. They simulate a population of agent for several weeks to 

acquire behaviour that is considered as competitive against other referenced agents utilising 

Pentium 4 CPUs of which they note to be one of the reasons as to why the generation times 

are slow. 

Tuning parameters such based on evolutionary simulations in the future could be a viable idea 

for ensuring that the constraints and conditions that we have in place for changing states are 

leaner and responsive to the behaviour of  certain the ghosts in the maze. What is meant by 

this is simply that although all the ghosts in the game make use of stochastic behaviour at 

random intervals, they still utilise their own behavioural patterns. This meaning that the agent 

would be more capable of responding to certain ghosts and changing states when appropriate. 

(Galván-López et al., 2010) demonstrate a more dynamic approach to the usage of rules by 

generating them through grammatical evolution. They relate the work that they conducted to 

be similar to that of (Szita and Lõrincz, 2007), in that the strategies that are applied to their 

agent are generated through an evolutionary algorithm. Through using a simple and readable 

if <condition> then <action> statement, they could generate complex set of rules that the 

agent would abide by. They conclude within their results that their evolutionary based method 

achieved a higher score in comparison to a hand-coded approach, which within the context of 

our research would be a finite state machine. 
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2.3 Decision weighting and Finite State Machines 

A Finite State Machine (FSM) is a set of states that determine the behavioural actions of 

an AI agent. States may transition between each other if a condition is met, otherwise 

the operation of the state will repeat continuously. The FSM dictates agent behaviours 

and decisions at a given time-point based on its current state. 

(Thompson et al., 2008) 

Recent works by (Thompson et al., 2008) demonstrate promising results through the method 

of controlling their agent through pure state-based strategies. The research demonstrates that 

they apply their agent’s logic through a simulator that only replicates certain features to the 

original Ms. Pac-Man software. They combine the Finite-State Machine with underlying 

strategies to alter the behaviour of the agent. Through the usage of their finite state machine, 

they apply 3 separate strategies for determining the most optimal direction to take once they 

arrive at a junction. The first being a total count of all available pills from all possible 

directions that can be taken at the junction that Ms. Pac-Man is at and then heading in that 

direction. 

This approach becomes rather short-sighted however, as its method of avoidance is purely 

reactive to the adjacency of ghosts. Notably the greedy look-ahead strategy that is described 

by (Thompson et al., 2008) for finding the nearest tunnel where pills are available is 

something worth considering when combining with an MCTS implementation. 

As stated in 2.3, the MCTS can fall short of functionality should there be no pill within the 

reach of search tree. Extending said search tree comes at the cost of the CPU and slow 

decision making times meaning that to fill the gap by having a state machine that is 

responsive in producing a A* path to the nearest pill node could be a viable option. 

Furthermore we can consider that the MCTS algorithm could be used as a means of 

determining the safety of the Ms. Pac-Man agent during the traversal to the nearest pill node 

(Tong and Sung, 2010). Should the oncoming C-Path be considered dangerous based on the 

returned results of the MCTS tree then a re-plan of the path could be done to ensure safety. 

Additionally, (Fitzgerald and Congdon, 2009) utilize a rule based approach when targeting 

their agent towards a Java version of the Ms. Pac-Man game. Although heavily modified from 

Simon Lucas’ original Java-based software, their agent receives an average high score of 

10,364 by applying a set of hand-coded rules and parameters. Similar to that of a typical 

FSM, they apply conditions from a range of vocabulary that the agent must respond to. These 
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conditions in turn are determined by parameters that are implemented by hand. Although their 

agent is purely reactive to the information that is provided to it (i.e. responding to each 

captured image separately with no previous history of the maze), they enhance the chosen 

rules by applying an evolutionary algorithm.  

It was noted that the intention during the development of the agent to implement an 

evolutionary component to producing dynamic conditions and properties. It was never 

developed before the CIG 2009 competition thus leaving the question open as to whether an 

evolutionary algorithm can produce a more comprehensive rule set and ultimately better 

performance. We believe that an approach like this could be considered flawed given the non-

deterministic nature of the ghosts. For instance, if the parameters are adjusted in accordance 

to the agents interaction with the ghosts (adjacency etc.), and the behaviour rules of each 

respective ghost is non-deterministic then then the information that is gained is going to be 

consistently thrown off. 

(Gallagher and Ryan, 2003) demonstrate a rule-based agent that places emphasis on 

generating parameters using evolutionary algorithms that appropriately respond to dangerous 

situations within the environment. Their approach begins with using a two-state finite state 

machine of which consists of explore and retreat. While the strategy of the agent is very much 

static, the parameters that are applied are tuned appropriately based on what is occurring 

within the game state. 

Another example of a successful rule-based approach to solving the problem was 

demonstrated at the 2009 CIG IEEE conference by the Ice Pambush 3 agent (Thawonmas and 

Ashida, 2010). Although the screen-capture interface that was used had been optimised, there 

were noticeable gains in the way that the agent performed through the logic that was 

implemented. It’s worth mentioning that the applied rule set to the agent is not increased at 

all, instead the parameters are finely tuned based on the information that is provided from the 

state space. 

This information then determines the radius in which the Pac-Man agent should be concerned 

about such as the proximity of the ghosts. When the agent then meets the condition for 

wanting to head for an adjacent pill, the Depth-First Search (DFS) path planning algorithm is 

applied to determine the most optimal route to get there. 

Applying an evolution strategy, similar to what (Fitzgerald and Congdon, 2009) intended to 

implement, (Thawonmas and Ashida, 2010) were able to optimize the distance and cost 
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parameters with their agent. These are values that are used for determining the appropriate 

distance between the ghost and the agent as well as how effective certain paths around the 

maze are to achieving the highest possible reward. Through their rule-based system however, 

they additionally apply a fixed short-term strategy to ensuring that the agent can “ambush” the 

ghosts when they are adjacent. When the appropriate rule condition is met, the agent will 

remain in relative position so that it does not stray from a certain radius of the power pill. 

When the ghost is within distance then the agent will pursue the power pill in question. I 

believe that applying a strategy such as this as well as utilising some form of game state 

awareness (MCTS in this instance), could ultimately mean that we have an agent that has a 

strategy in mind whilst having accurate enough knowledge to avoid ghosts down certain C-

paths within the maze. 

(Szita and Lõrincz, 2007) follow a similar pattern in their work. However, rather than modify 

the parameter values such as what would be considered dangerous distance to the agent for 

example, they generate a list of the rules based on a collection of “action modules” and 

observations. The results presented after the experiments of (Szita and Lõrincz, 2007)’s work 

demonstrated that the usage of the Cross-Entropy-Method would be beneficial for generating 

these policies for targeting multiple goals at the same time. Furthermore, their method is 

capable of determining the priorities within decision lists (a collection of rules), therefore 

should more than one rule have their condition met at the same time then the one with the 

preferable priority would have its action executed. Such an idea of prioritisation could be 

considered worthwhile of pursuing for enhancing a static FSM approach. For instance, if Ms. 

Pac-Man were within imminent danger of being consumed by a ghost but was nearing a 

power pill, the task of acquiring the power pill within the maze would be prioritised. This 

would be so that it would prevent the Ms. Pac-Man agent changing direction right before 

consumption. 

It’s still worth noting however that the previously mentioned approaches are negligent of the 

direction that the ghosts are coming from, they instead determine solely the adjacency and use 

this value for determining whether the ghosts are a danger. On the contrary, the MCTS 

algorithm could be utilised to evaluate the likelihood of survival when simulating the game 

state at a junction within the maze. The reason we believe this would be preferable is because 

by determining the proximity of the ghost to the agent itself doesn’t provide any additional 

information as to which direction the ghost will go in next. We consider this problematic 
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seeing as the ghosts within the environment operate within a stochastic nature (Thompson et 

al., 2008). 

2.4 Ghost Avoidance and Detection 

Within the original version of the Pac-Man game, the behavioural patterns of the ghosts are 

already known, as in to say that they are deterministic. In contrast, ghosts within the original 

Ms. Pac-Man game operate in a non-deterministic nature (Thompson et al., 2008). However it 

is considered that there are some circumstances in which the ghosts will target Ms. Pac-Man 

in such a way that it will consequently block every potential path of escape for the agent. 

(Thompson et al., 2008) apply a somewhat simple method of avoidance against the ghost by 

determining adjacency measured in terms of the Manhattan distance (Krause, 1987). Similar 

method is applied but in a more dynamic sense by  (Szita and Lõrincz, 2007) where they 

generate priority based rule sets using actions such as “NearestEdGhost” or “NearestGhost” 

which returns the distance in which the Ms. Pac-Man agent should respond to. These rules in 

turn are determined by applying the Cross-Entropy Method. 

(Tong and Sung, 2010) approach this problem through utilizing the MCTS algorithm and 

applying a shallow search within the immediate state space of the Ms. Pac-Man controller. A 

shallow-depth search in this context is when the depth of the MCTS search-tree is shortened 

to represent intermediate game states rather than ending ones (i.e. game states that would 

occur just after a turn at a junction). The method is applied due to idea that if the Ms. Pac-

Man agent was considered to be in a dangerous state then the ghosts would be nearby and 

therefore would be detected by simulations carried out within the branches of the MCTS tree 

due to less thorough nature of the generation. 

2.4.1 Pincer moves 

Considering that the behavioural patterns of the ghosts within the environment are random in 

nature, there are some instances where there can be the possibility of one or two ghosts 

teaming together to target the Ms. Pacman agent within a corner. This is referred to as a 

“pincer” move and in essence means that every path that Ms. Pacman would otherwise have 

to escape is then blocked causing for the agent to be forced to lose (Pepels and Winands, 

2012). 

As such, it would mean that during runtime of the games simulation, we would have to take 

into consideration the positioning of the ghost AI so that we can tell early on if there was 

some kind of ambush being formed. (Pepels and Winands, 2012) discuss within their 
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implementation of MCTS for both ghost and Ms. Pacman agents, that by applying a LGR 

policy (Last-Good-Reply) (Baier and Drake, Dec.), it is possible to tell early on when a pincer 

move is occurring for the Ms. Pacman agent. 

(Baier and Drake, Dec.) describes the MCTS algorithm as an inductive machine learning 

method in that in that results of the previous play out, in which this context could be 

considered a junction within the Ms. Pac-Man maze, affect the moves of the future game 

states. While this might not be considered entirely true within the context of Ms. Pac-Man 

considering ghosts behave partially within a stochastic nature, there is some relevance. 

Through this, (Baier and Drake, Dec.) state that each “reply” (i.e. a good move made in the 

game), are stored within the predecessor during the back-propagation process of the MCTS 

generation when playing a game of Go. (Pepels and Winands, 2012) conclude within the 

results of their research that applying such a method doesn’t provide any significant 

performance enhancement when it comes to effectively avoiding a team of ghosts. This would 

conclude that ultimately using something such as Last-Good-Reply alone would be futile in 

determining a pincer move and would only add more computation time onto an already 

expensive algorithm. Rather than recording moves, (Tong and Sung, 2010) use an influence 

map to avoid parts of the maze that would otherwise be considered dangerous due to the high 

possibility of a pincer move forming. As mentioned in 2.4.3, the influence map places 

weighting against the scoring of the search tree branches of MCTS based on the parts of the 

maze that the tree expands to. This makes it less likely that the agent will head towards the 

direction of a corner of the maze unless it has to due to the applied penalty of going within 

that area. 

Through the provided literature we have demonstrated that there has been positive progress 

made through the research of using either of our proposed AI methods. Moreover, we have 

also seen varying methods of application which has aided us to refine our approach to 

implementing our agent. While we recognize the MCTS algorithm to be CPU intensive, we 

see also that there are varying useable techniques that enable us to reduce the effects of this. 

We see also that through previous competition entries that there are various fixed hand-coded 

strategies that have been consistently proven to be successful such as the Ice Pambush 3 agent 

(Thawonmas and Ashida, 2010). Through our agent design we will demonstrate the varying 

approaches that were taken to enable both the MCTS algorithm and the finite state layout to 

be competitive.  
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3. Implementation 

Referring back to the Computer Intelligence and Games conference mentioned in section 2 of 

our literature review, there are two ways that are regarded as the main methods of 

implementing an AI agent into the likes of Ms. Pacman gameplay. The first method is through 

the usage of simulator and the second through a screen-scraping interface observing the 

original game software.  

It was taken into consideration that the method of obtaining graphics buffer information from 

the original software would apply additional latency to our agent’s computation. The reason 

for this is because of the time required to analyse the image of the game and extract the 

conditional information that we would require from it (locations of Pacman, pills, ghosts etc.). 

Furthermore it was considered that we would have spent more time optimising the efficiency 

of object recognition and ensuring that the game state was accurately represented when 

information was missing from the captured images. We believe instead that our efforts would 

be best placed in ensuring that the agent’s behaviour is optimal and in accordance to our agent 

design specification as stated in section 4. 

Our simulator at each tick will request for our agent to return a move that it wants to go in and 

will provide our agent with the current GameState.  

Refer to the abstract method definition below. 

        /// <summary> 

        /// Called at every tick 

        /// </summary> 

        /// <param name="gs">A copy of the game state instance</param> 

        /// <returns>Returns the direction that we want to go in</returns> 

        public override Direction Think(GameState gs) 

 

Figure 8 - The abstract method stub that is provided to us through the simulators API. 

The direction value that is returned is an enumerator that consists of the following values. 

public enum Direction { Up = 0, Down = 1, Left = 2, Right = 3, None = 4, 

Stall = 5 }; 

 

Figure 9 - The direction that has to be returned to the simulator at each tick. 

• Stall – Informs the simulator to keep the agent stationary. 
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• None – Informs the simulator to keep moving in the same direction that Ms. Pac-Man 

was moving in previously. 

The other values in the enumerator type are considered to be self-explanatory. 

4. Agent Design 

By applying a finite state machine structure to the implementation of our agent, it provides us 

with a strategic approach that can provide context for a heuristic best-first search algorithm 

such as MCTS. Given the context in which the algorithm is used can be defined by the finite 

state that the agent is in during the time of usage. For example, the algorithm could be used 

for ghost avoidance or for simply navigating the maze based on the highest reward output of 

each branch within the tree. 

Furthermore, we intend for the MCTS simulations to be used solely within the Wander state 

as it will be able to determine the best c-paths to traverse through the reward output of the 

simulations. The Wander state will change states should any of the pre-defined parameters 

have their condition met. In this instance, should the agent be within a certain distance of a 

ghost (based on the parameters we provide), then the state will change. We measure the 

distance between each entity within the game based on a metric called the Manhattan 

distance. 

The “Manhattan distance” is a form of measurement that derives from the idea of taxi-cabs 

that move from one end of Manhattan Island to the other through the city blocks. Which route 

that is considered the shortest can vary or be considered equal but at the same time appear as 

completely different (Krause, 1987).  We can apply this method of measuring distance in the 

context of the game of Ms. Pac-Man due to junctions and turns within the maze. 

Due to the nature of the simulator’s current version, it’s worthwhile noting that rather than 

producing decisions at each intersection, Ms. Pac-Man will have to determine a low-level 

decision (i.e. a direction) at every tick of the simulators runtime. The available outputs of our 

agent controller is the four possible directions (up, down, left, right) along with none (carry on 

moving with the previously selected direction), or stall. Stalling informs the simulator to 

repeatedly inverse the direction of the agent so that Ms. Pac-Man remains in relatively the 

same position. This is particular output is used with the likes of our Ambush strategy. Refer to 

Fig. 7 for the values that the agent must return at each tick. 
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4.1 Tree Search Implementation (MCTS) 

4.1.1 Structure 

We intend for the structure of our MCTS implementation to be similar to that of a Min-Max 

tree. As stated by (Browne et al., 2012), a min-max tree is typically used within an a perfect 

environment (i.e. an environment that is completely observable). Given the context of the 

game of Ms. Pac-Man, the entire state space is viewable by the player, so in this regards we 

would consider it to be the same for the AI agent as well. 

4.1.2 Usage 

We aim to make use of the MCTS algorithm at each junction that the agent arrives at in the 

maze. A junction is defined as a point within the maze in which the agent has 3 or more 

possible directions that it is able to move in. It is only at these points in which the agent will 

evaluate all the possible directions and determine which direction to go on the next tick. This 

consequently means that during L-shaped paths (junctions with only 2 possible moves) within 

the maze the agent is still going to have to move constantly. A problem arises from this due to 

the fact that the agent will not be called upon to choose a direction when heading through this 

type of tunnel. This is fixed simply by applying the function displayed within Fig. 10. 
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        // Attempt to go within the provided direction. If it's not 
possible, then 
        // return the next nearest direction. 
        private Direction TryGoDirection(GameState gs, Direction 
pDirection) 
        { 
            var _directions = gs.Pacman.PossibleDirections(); 
 
            // Determine whether or not we are able to go in that direction 
            if (_directions.Contains(pDirection)) 
            { 
                return pDirection; 
            } 
            else 
            { 
                // Just return the first that is not the inverse of the 
direction 
                // that we are aiming to go in 
                foreach (var dir in _directions) 
                { 
                    if (GameState.InverseDirection(dir) != pDirection) 
                    { 
                        return dir; 
                    } 
                } 
            } 
 
            return Direction.None; 
        } 

 

Figure 10 - Simple function for returning the next possible move when traversing irregular C-Paths 

It is noted that during the preliminary part of our tests, we aim to make use of the algorithm 

only within the Wander state of the agent so that the decisions made within that state are 

determined by the amount of pills that are consumed more than anything. 

4.1.3 Direction Selection 

Stated previously, the agent’s navigation around the maze will mostly be influenced by the 

MCTS search algorithm and the UCB scores that are generated by it. This is because I believe 

that through the simulation stages of the generation of the tree, it will determine the best 

possible score through certain c-paths whilst taking into consideration the ghost through 

adjacent routes. 

Through the research stages, we alternated between several different methods of tree node 

selection as stated by (Browne et al., 2012), once the appropriate scores are generated by the 

UCB evaluation. 

• Max child: Select the most visited root child (higher sample size) 
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• Max-robust child: Select the root child with both the highest visit count and the 

highest reward. If none exist, then continue searching until an acceptable visit count is 

achieved. 

• Secure child: Select the child of which maximises the lower confidence bound. 

For the evaluation of the tree nodes within the search tree, we aim to use the formulas stated 

within section 2.1 of our literature review which are UCB1 and UCB-Tuned. 

4.2 Considerations 

Having reviewed the literature in section 2.1, we are lead to believe that there are a few things 

that we should be concerned in regards to our how we approach implementing our agent. 

4.2.1 Simulation Cycles 

When a node within a generated tree is evaluated for its reward, the game state at the time of 

evaluation is simulated by how many is defined as a parameter. The agent during this period 

will not behave by the same rules and conditions as our actual implementation, rather it will 

move randomly for the given amount of cycles based on 

Based on the ideas mentioned within the agent implementation of (Thompson et al., 2008), I 

concluded that it would be appropriate to base the agent that we would use for our simulations 

two separate strategies. 

• Greedy-Random 

o Upon arrive at a junction, the Ms. Pac-Man agent will determine which 

direction contains the most pills and chose it as the next choice within the tick. 

• Random-No-Inverse 

o A random move is selected, but it cannot be the inverse of the current direction 

that Pac-Man is going in. 
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        public override Direction Think(GameState gs) 

        { 

            List<Direction> possible = gs.Pacman.PossibleDirections(); 

            if (possible.Count > 0) 

            { 

                int select = GameState.Random.Next(0, possible.Count); 

                if (possible[select] != 

gs.Pacman.InverseDirection(gs.Pacman.Direction)) 

                    return possible[select]; 

            } 

            return Direction.None; 

        } 

 

Figure 11 – Random-No-Inverse: The logic used for the simulation cycles in the tree 

4.2.2 Tree Depth 

There are two main ways of measuring the depth of the tree. 

4.2.2.1 Layer Depth 

The layer depth within the search tree is considered as the recursive level that the tree can 

expand to. For instance, when the root expands in 4 possible directions that is considered as 

one layer, and should one of the children from that expansion gets chosen to expand again, 

that would be constitute as a layer as well. 

4.2.2.2 Child Depth 

The child depth is considered to be the total amount of children that can be generated within 

the tree. This accounts for every branch within the tree that is not considered a leaf (i.e. no 

children from a given node). 
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4.3 Finite States 

With my implementation of the state machine, upon transitioning between states, one set of 

actions will be called once before entering a loop in regards to the state. Following a similar 

FSM structure demonstrated by (Thompson et al., 2008), I aim to implement specific 

strategies that are responsive to certain scenarios. For example when a power pill is consumed 

by our agent or when ghosts are within close proximity of our agent. Furthermore, I almost 

hope to put in place a method of ambushing the enemy ghosts within the environment. 

Due to the promising results that were demonstrated within their result we concluded that it 

would be appropriate to follow a similar structure with a few additional enhancements. Refer 

to Figure 12 to observe a visual representation of the states that are to be used in our agent. 

4.3.1 (Default) Wander 

Being the first state that is executed during when the controller is launched for the first time, 

Ms. Pacman will apply the MCTS algorithm to generate the tree at each junction of the maze. 

As mentioned previously, based on the selection parameter that is chosen through testing 

(Max Child etc.) will determine how the next direction at the maze junction is selected. 

For each set of tests, we will be replicating the same conditions but changing the parameters 

to see what the outcome is of these tests. Stated in section 2.3.4, we concluded that it would 

be appropriate for our AI to respond to three conditions that would determine whether or not 

the agent would change its currently active state to that of another. 

4.3.1.1 Conditions 

• Endgame 

o If the remaining pill threshold within the maze has been met. 

o If the highest scoring child within the tree is 0. This means that there are no 

adjacent pills nearby that would otherwise raise the score of the child node to 

something above 0. 

• Flee 

o If the nearest ghost is 2 Manhattan distance (Krause, 1987) value away from 

the agent, change to the fleeing state. 

• Ambush 

o If a power pill is considered close enough to the Pac-man agent based on a 

fixed constant, then change to the Ambush state. 
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4.3.2 Flee 

If the Ms. Pac-Man agent is within a close proximity of a ghost and the MCTS hasn’t 

provided a better alternative route during the Wandering state, then this state is considered as 

a failsafe. The agent will recognise the direction that the ghost is coming towards the agent 

and will attempt to go the opposite direction if possible. It is considered dangerous when the 

nearest ghost is within configurable nodes distance (FLEE_THRESHOLD) of the agent. 

This state is implemented due to the way that that the MCTS algorithm is applied within our 

agent. Our agent will not change direction midway through traversal of a C-Path in the maze 

which leaves the agent vulnerable to g hosts that would perhaps otherwise make moves that 

are different to those that were simulated. This is entirely possible based on the stochastic 

nature of the ghosts mentioned in section 2.1. The Flee state then becomes an intermediary 

that guides the agent away from the dangerous scenario before returning to Wandering again. 

During this state, upon arriving at a junction within the maze, it will evaluate all possible 

directions and determine whether there is a ghost in that direction. Should there be a ghost in 

all provided directions, then the agent will determine the furthest ghost and then head in that 

direction in off-chance that there will be another junction. 

Should the distance of the nearest ghost to Ms. Pac-Man be farther than that of the parameter 

FLEE_CHANGE_THRESHOLD, then the agent will change state back to Wander. 

4.3.2.1 Conditions 

• Wander 

o The agent will return back to the wandering state when it is considered safe 

again. It is considered safe when the agent is at least 2 nodes distance values 

away from the nearest ghost. 

4.3.3 Ambush 

The functionality of this state is considered to be rather simple and is only transitioned to 

during Wander should the condition be met that there is a power pill within a certain fixed 

radius. 

Within this state, the agent will repeatedly change directions back and forth between its 

current direction and the one opposite to that to ensure that it remains in relatively the same 

position. Due to the way in which the game works, Ms. Pac-Man has to be moving at all times 
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unless the agent is in a corner which means that the controller has to interact with the game in 

such a way to ensure that the agent doesn’t progress any further around the maze. 

This will continue until the condition is met determining that the enemy ghosts within the 

maze are within a pre-defined constant radius of the agent 

(AMBUSH_DISTANCE_THRESHOLD). Should the ghost be within the radius that is 

defined in the controller, then the agent will go for the power pill and then transition to the 

Hunt state. We’ve applied this method based on the success that (Thawonmas and Ashida, 

2010) had with their implementation of the Ice Pambush 3 agent.  

4.3.3.1 Conditions 

• Hunt 

o Once the agent has consumed the power pill, change to Hunt so that the mortal 

ghosts can be pursued when the agent is immortal. 

4.3.4 Hunt 

Upon consuming the power pill, the agent will immediately target adjacent ghosts. Upon 

selecting the nearest ghost based on the Manhattan distance, a Dijkstra-based path will be 

generated and a sequence of low-level moves (directions) will be provided to the agent to 

follow. However, should the agent fail to find adjacent ghost that are within approachable 

distance during the energise time (4 seconds – although changeable) then the agent will return 

to the “Wander” state. 

The value that will determine the adjacency of the ghosts will be determined through the 

experimentation phases of the agent. 

4.3.4.1 Conditions 

• Wander 

o If the ghost that the agent is targeting comes out of being mortal (i.e. inedible), 

then the agent will return back to the Wander state. 

4.3.5 End Game 

This state is activated when there are no immediately adjacent nodes to the Ms. Pac-Man 

agent within the maze or the MCTS search tree is returning a best score of 0. The purpose of 

this state is to generate the shortest available path to the nearest node that contains a pill. Once 

we are near enough, we return back to the Wander state where the MCTS algorithm will be 

close enough to the remaining pills to determine the best scoring route for the agent. This is 
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similar to the strategy that was applied as a part of the work carried out by (Thompson et al., 

2008) in which they state it as being Greedy-Lookahead. 

4.3.5.1 Conditions 

• Wander 

o If we’re considered to be near enough a pill, it would be safe to assume that the 

MCTS search depth is within range of the remaining pills within the 

environment. 

• Flee 

o The agent will resort to fleeing if at any point it considers itself to be in danger 

with any of the ghosts in the maze. 

 

Figure 12 - Diagram displaying the finite state machine layout of our agent. 

4.4 Development 

For the implementation of our AI agent, I decided to utilize the IEEE CIG suggested C# based 

simulator developed by (Flensbank and Yannakakis, 2008). My reason for choosing this is to 
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do with our familiarity and understanding of the programming language and knowing how to 

exploit it to implement the AI controller better. Utilising Visual Studio 2008, the solution 

consists of the simulator, the screen capture adapter (that utilises the original Microsoft Ms. 

Pacman “Revenge of the Arcade” Software) and the library project that is loaded into it that 

will contain the implementation of my Ms. Pac-man agent. This separate DLL (dynamic link 

library) containing the implementations code is then loaded into the simulator during runtime 

using the .NET System.Reflection namespace. It is noted that the simulators choice of 

rendering the game state to the player through the means of WinForms and GDI+ is not 

entirely ideal based on the fact that it utilizes the CPU for the majority of its rendering 

processing (Microsoft, 2012). However, we believe it should remain sufficient enough in our 

endeavours for the agent that we intend to develop. 

4.5 Modifications 

Our agent required several pre-requisites to be met before being developed, some of which 

were not available with the original version of the simulator. Extensive modifications had to 

be carried out on the engine and structure of the software before-hand so that we could 

proceed. 

4.5.1 External File Management 

Minor modifications have already been made to the simulator environment, including 

problems that were found in which the assembly (.dll) containing the data regarding our agent 

implementation was unable to load. As it turned out, this was partly to do with the way that 

the simulator environment was managing external files to operate with which in turn caused it 

to crash frequently. 

4.5.2 Cloning Game States 

The fundamental part of the Monte-Carlo Tree Search algorithm is for its ability to simulate 

potential game states in a discretized state space. In order to achieve this, it would mean to 

replicate the information that is used for processing the gameplay at runtime. The original 

source code that was provided for the simulator appeared to have the appropriate method stub 

in place for cloning but unfortunately there was no functional code that would enable us to do 

such a thing.  

We discovered that through utilising C# there were various methods of cloning object data at 

runtime through the means of manually generating new objects and copying information 
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between the current game state and the replica or simply parsing the object through 

Reflection. 

Although using the means of Reflection saved us a substantial amount of development time, 

there was still a significant delay when the cloning process began during runtime of 

approximately 5 seconds or more. Considering that the game state has to be cloned numerous 

times during the recursive tree generation process, this was simply unfeasible. As such, we 

discovered that although it would be somewhat error-prone, it was better to implement our 

own manual method of cloning. We carried this out by modifying the main objects within the 

simulator by making sure that the implemented the IClonable interface. This interface was put 

into place with all relevant entities in the game state included Ms. Pac-Man, the four ghosts, 

map information and the game state itself. 

Through this method, there was a decrease in the time that it took to clone certain games 

when using certain parameters for the MCTS generation. Upon removing irrelevant map data 

from the cloning process, such as levels that were not immediately relevant to the simulation 

procedure, we were furthermore able to decrease the time required to clone. 

Furthermore we encountered an issue in the way that the information regarding each node 

within the game state was being copied. This is to do with how the Node class is laid out 

within our simulator. Within each Node object, there is a refer to the node that is  

4.5.3 Capturing screen buffer and saving to images 

As an invaluable tool for debugging and determining 

the effectiveness of the recursive tree algorithm, I 

implemented a function within the simulator that 

enabled me to automatically take screen shots every 

time the controller arrived at a junction and generated 

a new search tree. 

From this, we can ensure appropriate scores are being 

generated during the runtime of the simulations within 

the environment. An example of this would be when 

Pacman arrives at a junction and a ghost would be to 

the immediate right. I would expect the branch to the 

right of the generated tree to have a severely penalised 

Figure 13 - An example image that is captured 

from the simulator upon arriving at a 

junction. 
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score after evaluation because taking that route would be suicide for the agent (e.g. a value 

that is a lot lower than 0). 

Due to the structure of the simulator, it also meant that we could generate a visual 

representation of game states that we were not necessarily able to see such as the ones that 

were simulated by the Monte-Carlo Tree Search algorithm. This meant that we could 

accurately determine that conditions were being met when the tree generation process was 

occurring. 

Lastly, it also meant that we could identify the ways in which our agent would lose the game. 

For instance, as stated within section 2.4.1, pincer moves are entirely possible within the 

game. Therefore as a means of counter-acting this kind of behaviour from the ghosts, we must 

identify first in what state the game was in when the agent lost. 

4.5.4 Logging information 

For better debugging capabilities, we integrated a logging system that would append new 

messages onto a text file that correlated to the session that we were debugging within. Saved 

with a date timestamp, it afforded us flexibility in finding out values of game states that we 

couldn’t necessarily see. For instance, with the generation of the MCTS tree, there are several 

simulations of a game state going on that are now visible to us as the user. The logging 

functionality enabled us to output the information that was appearing. 

To enable for our logging output to be efficiently recorded without much effort on our part to 

store and reuse, we made use of the Newtonsoft JSON libraries developed by (James, n.d.) for 

serializing our TestStats object that stores all the information regarding the test. By serializing 

it within this format, it means that afterwards we are able to read the text file into an external 

tool and deserialized it back into an object within code at runtime. This saves us time having 

to prepare a proprietary file format that would be used by the simulator. Instead, we can store 

the information in a widely recognized format and do so without costing us much 

development time. 
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Refer to the code below to overview the TestStats class.

    public class TestStats : JsonSerializer 

    { 

        public int MinLevelsCleared = 0; 

        public int MaxLevelsCleared = 0; 

        public int AverageLevelsCleared = 0; 

        public int TotalLevelsCleared = 0; 

 

        public string SessionID = ""; 

 

        public long ElapsedMillisecondsTotal = 0; 

 

        public int TotalGames = 0; 

 

        // The amount that each of the ghost kills the Pac-Man agent. 

        public int RedKills = 0; 

        public int PinkKills = 0; 

        public int BlueKills = 0; 

        public int BrownKills = 0; 

 

        public int TotalPillsTaken = 0; 

        public int MaxPillsTaken = 0; 

        public int MinPillsTaken = int.MaxValue; 

        public int AveragePillsTaken = 0; 

 

        public int TotalGhostsEaten = 0; 

        public int MaxGhostsEaten = 0; 

        public int MinGhostsEaten = int.MaxValue; 

        public int AverageGhostsEaten = 0; 

 

        // Used for recording how long each game round takes. 

        public float LongestRoundTime = 0; 

        public float ShortestRoundTime = float.MaxValue; 

        public float AverageRoundTime = 0; 

        public float TotalRoundTime = 0; 

 

        public float MinLifeTime = float.MaxValue; 

        public float MaxLifeTime = 0; 

        public float AverageLifeTime = 0; 

        public float TotalLifeTime = 0; 

        public int TotalLives = 0; 

 

        public int MCTSTotalGenerations = 0; 

        public int MCTSMaximum = 0; 

        public int MCTSMinimum = int.MaxValue; 

        public int MCTSAverage = 0; 

        public int MCTSTotalTime = 0; 

 

        public int TotalScore = 0; 

        public int AverageScore = 0; 

        public int MinScore = int.MaxValue; 

        public int MaxScore = 0; 

 

        public void Reset() 

        { 

 

        } 

    } 

 

Figure 14 - The TestStats object that is serialized when the testing is complete. 

4.5.5 Simulator 

Other discrete modifications were also made to the way that the simulator launched such as 

argument handling so that we had greater flexibility in the way that we were able to simulate 
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games with our controller without having to modify code directly within our instance of 

Visual Studio 2008. 

List of available arguments 

• -c 

o How many games do we wish to simulate. 

• -g 

o Ghosts that we want available in the simulation. Referring back to the testing 

methods that (Gallagher and Ryan, 2003) demonstrate, I considered that it 

might be preferable to implement something like this for debugging and 

performance analysis purposes. 

• -q 

o Prevent the agent from generating any log output to the console screen. 

• -a 

o Name of the agent that we want loaded from the aforementioned dynamic 

linked library. 
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5. Research & Analysis 

5.1 Setup 

 

Figure 15 - The appearance of the simulator during runtime. The debug console (left) and the visual interface of the 

game state (right). 

The simulator that we chose to develop our agent with contained functionality that enables us 

to run game simulations without any form of visual interface (refer to Fig. 15). Additionally, 

through this method it will produce the results without us having to wait in real time for the 

agent play outs to finish. 

We concluded that for the setup of our testing that it would be appropriate to simulate at least 

100 games with various tweaks made to the Pacman Controller. The MCTS implementation 

utilises several different constant parameters that are used to tweak the depth and simulation 

count. 

5.1.1 Monte-Carlo Tree Search Parameters 

• Max Simulations – MAX_SIMULATIONS 

How many simulations do we perform on the tree before stopping and extracting the 

next direction that the AI has to go in? This value could be either based on how much 

time is provided to the simulation stage, or a fixed constraint. Refer to section 2.1 for 

further understanding. 
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• Shallow Simulations – SHALLOW_SIMULATIONS 

Similar to that of Max Simulations, however this value is applied for then traversing 

C-paths and the agent is not at junction. Shallow simulations consist of simulating 

games states with a much stricter constraint considering that we are only after the 

immediate values. 

 

• Max Cycles – MAX_CYCLES 

How many random simulations should we perform on a node? During a simulation, 

another Ms. Pac-Man controller is used to play out these simulations. It is a very 

simplified agent and only carries out random moves each time it is called. 

 

• Expansion Threshold – EXPANSION_THRESHOLD 

How many times does a child node within the tree have to be visited before we 

consider it exhausted and ready for expansion? 

 

• Evaluation Method 

As mentioned with section 2.1, we displayed that (Pepels and Winands, 2012) utilized 

two separate evaluation methods for when expanding nodes within the search tree of 

which were UCB1 and UCB-tuned. They state within their research output that they 

had more consistent and better results when there was a higher simulation and 

expansion count. 

 

• Layer Threshold – LAYER_THRESHOLD 

This value is considered to be the absolute depth that the tree can expand the children 

to regardless of how many samples have been done on the node that is returned as the 

Upper Confidence Tree. 

5.1.2 Finite State Machine Parameters 

• Ambush Distance – AMBUSH_DISTANCE_THRESHOLD 

This is considered as the distance in which the agent must be from the power pill 

before entering the Ambush state. 

 

• Flee Change Threshold – FLEE_CHANGE_THRESHOLD 
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The value defined will be the distance in which the agent has to be away from the 

nearest ghost in order to transition back to the wandering state. 

 

• Flee Distance – FLEE_DISTANCE 

The ghosts within the maze must be within a certain distance of the agent before the 

“Flee Distance” condition is met. 

 

• End Game Distance – END_GAME_DISTANCE 

How far away must the agent be from the nearest pill before the End Game state is 

activated? 

Furthermore I aim to determine how the results will vary when I enable for child nodes of a 

branch to return back in the same direction that their parent came from. For example, child A 

from the root node may extend towards the left. Should Child A expand and generate children, 

one of those children may expand back in the direction that Child A came from technically 

causing for an overlap in paths. (Pepels and Winands, 2012) remove the possibility of this 

happening (noted as reverse moves) when they conduct their tests on their MCTS enhanced 

agent, however I feel that by enabling it, it could enable for more thorough results. 

In regards to the back propagation process itself, we intend on looking at the performance 

difference between using evaluation formulas UCB1 and UCB-tuned, both presented by 

(Auer et al., 2002) as a means of determining the most optimal reward from a search tree. 

Referring back to section 2, (Samothrakis et al., 2011) displayed within their MCTS research 

that with fewer simulations and a higher search-tree depth they were consistently able to 

achieve a range of scores that were much higher. Whereas when the UCB1 formula was used 

for tree evaluation, there was no real correlation between the tree-depth and the amount of 

simulations performed. 

For each agent that we have prepared, we will utilize varying configurations during testing to 

determine what the difference in agent performance is like. Each configuration will make use 

of a different set of values for each of the available parameters of the respective agent. These 

are stated in section 5.1.1 and section 5.1.2. 

5.1.3 Testing Machine 

Based on the research that was conducted by (Gallagher and Ledwich, 2007), we believed that 

it would be important to note the hardware that we would be carrying out these test on. The 
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reason for this is that the speed at which the MCTS simulations are completed would vary 

dependant on the machine that it’s run on, therefore it’s important to note that the results 

generated from our tests are in context of the hardware we have. These are the specifications 

of the computer that the tests will be completed and evaluated on. 

• I7 950 @ 3.6 GHZ 

• 12 GB DDR3 RAM 

• Nvidia GTX 580 video card. 

It is noted that the strength of the video card will not have any real effect in the calculations of 

the MCTS simulation at runtime. 

5.1.4 Controller 

The following is a summarisation of the controllers and the metrics that we aim to measure 

that we are going to be testing for our research. 

5.1.4.1 Metrics 

For each configuration during testing, we will be looking for a collection of values from our 

simulator test bed that will be used to determine the performance of our agent. Additionally, 

we will be recording screenshots of the game state of which will be stored in the 

corresponding configuration directory stated section 5.2.1. Through the observation of the 

screenshot, we will be able to recognize any trends that may have occurred in the behaviour of 

the agent such as pincer moves which was stated in section 2.1 of our literature review. 

Scoring 

Referring back the section 2.2.1 of the literature review, using the score of the game within 

our simulator test-bed would not achieve would not provide any reliable information on their 

own. Therefore for the purpose of our research, we will be using the score solely for 

comparing the varying performance between the varying setups that we have in place to 

display the effectiveness of combining the strategy of an FSM and the heuristics of the MCTS 

algorithm. 

MCTS Generation times 

To understand whether or not our MCTS implementation has been effective enough in terms 

of generation times we will be additionally monitoring how long it takes to generates varying 

lengths of a tree when the parameters are adjusted accordingly. Please refer to our testing 

setup to learn more. 
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Ghosts Eaten 

Recording how many ghosts were eaten during the game simulations will helps us determine 

how successful our agent is when being placed in the offensive. For instance, with the usage 

of our Ambush strategy within the Ms. Pac-Man, we will be determining how successful it is 

in consuming the enemy ghosts when placed next to the power pill until the ghosts come 

close. 

Pills Taken 

Due to the way that the MCTS algorithm works, we aim to find out how successful it is in 

consuming a large quantity of pills whilst surviving for a long period of time. 

Ghost Kills 

Before the end of every game, we aim to record how many times our agent was killed by each 

respective ghost. By using this metric we can then determine how each configuration interacts 

with the ghosts and how likely they are to be eaten by the ghost. 

Life Time / Round Time 

As a way of determining how our experiment configurations are at surviving for long periods 

of time against the enemy ghosts, we will record the life time within the game as well as how 

long in total they survive within each round. 

5.1.4.2 Pure MCTS behaviour 

To compare our implementation of the Monte-Carlo Tree Search algorithm, we decided that it 

would be appropriate to determine how well our evaluation formulas performed in contrast to 

the other published research such as (Robles and Lucas, 2009). In which the behaviour of the 

agent was completely based on the scores that were generated from the heuristics of the 

simple tree search. Therefore with this test we will remove all fixed strategies from the agent 

and see how it fares when it simply has the results of the MCTS algorithm to base its moves 

from. From this, we will be able to determine how effective the algorithm on its own would 

be without any form of hand-coded strategies to dictate the navigation of the agent around the 

maze. 

5.1.4.3 FSM with scripted behaviour 

The same finite state machine structure as our main implementation, this will utilize a set of 

hand-coded scripted conditions within the wander state rather than basing its method on based 

its preferred direction based on the UCB scoring that is generated from the tree node. 
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The behaviour in particular of this agent will emulate some of the details mentioned by 

(Thompson et al., 2008) in that at each junction the agent will evaluate every possible 

direction that it can take and determine which one offers it the largest amount of pills for 

consumption. The reason for our choice in using this methodology in our testing is due to the 

success that was demonstrated in their experiments. Therefore, comparing this behaviour in 

contrast to a heuristic based method would help determine if there was an improvement in 

performance. 

Just like the End Game state that we aim to implement within our main agent, should the 

agent fail to find any adjacent pills then it will generate the shortest path to the nearest one in 

the maze and resume to the Wander state. 

Ambush 

The functionality of this state will be identical to that of our main implementation. While in 

the wandering state, the Ms. Pac-Man agent will detect whether it is adjacent to a power pill. 

When a condition is met that it is in fact close enough, the controller will remain idle within 

the same position until a ghost becomes closer. When the ghost is considered close enough, 

the controller will head towards the power-pill and then transition to the “Hunt” state. 

Flee 

During the fleeing state, the actions of the agent will be similar to that of the original 

implementation specification in section 4.1.1. The agent will continue to move in the inverse 

direction of the agent, should it determine that the nearest ghost is within a distance of 2 

Manhattan values (i.e. nodes). 

Wander 

While Ms. Pac-Man is within this state, the aim will predominantly to consume the pills that 

are adjacent to the immediate position of the Pacman agent itself. When there are no pills that 

are within close proximity to the agent, it will then proceed to find the shortest path towards 

one. The key difference between this and our main implementation is that there will be no 

heuristic information detailing whether certain tunnels are considered safe or not. Therefore it 

will simply follow which ever maze that has adjacent pills at. 

End Game 

As previously mentioned, the End Game state is activated when there is a limited of pills 

remaining within the maze. For this variation of the agent, I will utilize a threshold of 25 
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remaining pills within the maze. When the game starts there are initially 285 pills that are 

available within the maze. 

5.1.5 Ghost Behaviour 

Throughout the testing stage, all four ghosts will be present within the maze. In our simulator, 

each ghost has a separate set of rules in how they behave. For additional testing in some cases 

I will utilize several instances of the same ghost to determine how agile the agent when 

presented with enemy characters that portray behaviour that is the same or at the very least 

similar. 

Red 

• A random distance threshold is generated when the ghost is created for the first time. 

• Should the Ms. Pacman agent be within a fixed radius of Red, then run the following 

conditions. 

o The Red ghost at any given point cannot stall or forever continue in the same 

direction. 

o On each tick, check the distance between the current node that the ghost is 

occupying and the node that the Pacman controller is occupying. 

o If the Pacman agent is within distance, then do the following move within the 

direction that Pacman is in. 

� For example, if Pacman meets the condition of being to the right, then 

change the preferred direction for the next update tick to the right. 

Pink 

• If the pink ghost is within a certain distance of the Pacman entity within the Game 

State and the random number that is generated returns as 0, then move randomly 

around the maze. 

o Moving randomly entails that the ghost will select a random direction to move 

in so long as it’s not the inverse of the previous direction that they moved in 

(i.e. last direction was right, so next can’t be left). 

• If Pacman is within a certain pixel distance of 120 and the current direction value of 

the Pink ghost is not set to “none”, then move in a similar pattern to the Red ghost. 

• Else if the Pacman agent is not within a certain distance then, the pink ghost will then 

determine whether the Pacman agent is above, below, left or to the right of the ghost. 
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• Based on the aforementioned conditions, the Pink ghost will attempt to go in the 

direction presuming that it is not the inverse of the direction that it is currently going 

in when the change of direction is attempted. 

Blue 

• If the Ms. Pacman agent is not within a fixed distance threshold, then select a random 

direction to move in other than the inverse of the current direction that the ghost is 

going in. 

• If the Blue ghost is within a certain distance of the Red ghost, then start using the 

same move set as the Red ghost to generate a mob like movement pattern. 

• Else if the Blue ghost is within a certain distance of the Pacman agent, proceed to 

move in the direction that the agent is in regards to the Blue ghost. 

Brown 

• Moves randomly around the maze, however the next direction of movement cannot be 

the inverse of the previous current direction that the ghost is moving in. No further 

conditions or actions are applied. 

5.2 Data Collected and results 

After simulating a total of 100 games for each setup within our simulator environment we 

concluded with the following results. 

We’ve provided each test case with a unique identifier that is generated from an MD5 hash of 

the current time stamp (provided by the DateTime object) up to the second. This unique 

identifier enables us to collate the testing information that is relevant to each agent that we are 

working with. For instance, should we wish to capture any images or serialize and save JSON 

text, the files will be appropriately placed in the folders named after the session ID. 

5.2.1 Folder Structure 

{SessionID}/ 

• Logs/ 

o EndOfTest_{datetimestamp}.txt – The final stats that are recorded before. 

o Output_{datetimestamp}.txt – The total collection of log entries that were 

stored. 

• Images/ 
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o Endofround_{datetimestamp}.bmp – Image that is scraped of the game state 

before the game is considered over. 

o Eatenpowerpill_{datetimestamp}.bmp – Image that is scraped of the game 

once the agent has consumed a power pill. 

o Eatenbyghost_{datetimestamp}.bmp – Image that is scraped of the game 

before the agent is eaten by the enemy ghost. 
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5.2.2 Main Implementation 

5.2.2.1 Configuration 1 

Test Session ID: session_C37E7E8698A4DEFCFB7ABE00AA858C0F 

1. MCTS Parameters 

Parameter Name Parameter Value 

Max Cycles 5 

Expansion Threshold 3 

Layer Threshold 7 

Evaluation Method UCB1 

Max Simulations 5 (Fixed Constraint) 

2. FSM Parameters 

Parameter Name Parameter Value 

Power Pill Adjacency (Ambush) 5 Nodes Distance (Manhattan) 

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan) 

Ambush Distance Threshold 5 Nodes Distance (Manhattan) 

End Game Distance 4 Nodes Distance (Manhattan) 

3. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 32 minutes 6 seconds 

Average Time Per Game 15 seconds 15 milliseconds 

Longest Time Per Game 46 seconds 36 milliseconds 

4. Scoring 

Minimum Score Average Score Max Score 

500 3823 9510 

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

26 115 215 

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten 

1 6 13 
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5. Monte-Carlo Tree Search Generation 

Minimum Generation Time Average Generation Time Maximum Generation Time 

109 ms 147 ms 250 ms 
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5.2.2.2 Configuration 2 

Test Session ID: session_29EBF1B5F210DD719E950AF2C65002E0 

The purpose of this configuration is to determine whether a more in-depth heuristics search by 

the MCTS algorithm yields any more positive results than from the previous test. Referring 

back to section 2.1 of the literature review, (Samothrakis et al., 2011) mention that the 

performance of their agent varied with the UCB1 evaluation method based on the amount of 

simulations were conducted. 

Therefore, for the configuration in this experiment I aim to alleviate the fixed constraint on 

the Max Simulations to something higher and increase the amount of possible layers that there 

can be in the tree. We aim to achieve more appropriate low-level direction choices from the 

agent in question by enabling for the simulations to be more thorough. 

1. MCTS Parameters 

Parameter Name Parameter Value 

Max Cycles 5 

Expansion Threshold 15 

Layer Threshold 12 

Evaluation Method UCB1 

Max Simulations 7 (Fixed Constraint) 

2. FSM Parameters 

Parameter Name Parameter Value 

Power Pill Adjacency (Ambush) 5 Nodes Distance (Manhattan) 

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan) 

Ambush Distance Threshold 5 Nodes Distance (Manhattan) 

End Game Distance 4 Nodes Distance (Manhattan) 

3. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 31 minutes 28 seconds 51 milliseconds 

Average Time Per Game 14 seconds 89 milliseconds  

Longest Time Per Game 37 seconds 4 milliseconds 
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4. Scoring 

Minimum Score Average Score Max Score 

140 4015 8600 

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

14 112 208 

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten 

0 6 12 

5. Monte-Carlo Tree Search Generation 

Minimum Generation Time Average Generation Time Maximum Generation Time 

171 ms 221 ms 358 ms 
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5.2.2.3 Configuration 3 

Test Session ID: session_F96E5588BCC184DCCFA7BA22B460CB07 

The same MCTS configuration settings are used this time around as the ones provided within 

the first configuration, however the only difference is that this time is that we are making use 

of a different method of evaluation for choosing the most optimal direction from the tree. 

Referring back to our literature review in section 2.1, we state that (Pepels and Winands, 

2012) demonstrated positive results when making use of this formula for generating UCB 

scores with the current node (i.e. a simulated game) and its parent’s score. 

1. MCTS Parameters 

Parameter Name Parameter Value 

Max Cycles 5 

Expansion Threshold 3 

Layer Threshold 7 

Evaluation Method UCB-Tuned 

Max Simulations 5 (Fixed Constraint) 

2. FSM Parameters 

Parameter Name Parameter Value 

Power Pill Adjacency (Ambush) 5 Nodes Distance (Manhattan) 

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan) 

Ambush Distance Threshold 5 Nodes Distance (Manhattan) 

End Game Distance 4 Nodes Distance (Manhattan) 

3. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 27 minutes 64 seconds 

Average Time Per Game 13 seconds 10 milliseconds 

Longest Time Per Game 42 seconds 48 milliseconds 

4. Scoring 

Minimum Score Average Score Max Score 

280 3035 10230 
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Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

28 103 208 

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten 

0 4 13 

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared 

0 0 0 

5. Monte-Carlo Tree Search Generation 

Minimum Generation Time Average Generation Time Maximum Generation Time 

124 ms 181 ms 281 ms 
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5.2.2.4 Configuration 4 

Test Session ID: session_580C95A11A10AD6853CD4F0E258FC100 

Within this configuration we aim to determine whether or not our agent is capable of 

returning optimal results if it is able to carry out more simulations during generation of the 

MCTS tree. (Pepels and Winands, 2012) demonstrate the UCB-Tuned formula consistently 

returns better scoring from the game when the simulation constraint is higher. Based on the 

results returned from the previous configurations we expect for there to be a higher latency in 

the generation of the tree, however we hope for the max latency to be under the time of 500 

ms. 

1. MCTS Parameters 

Parameter Name Parameter Value 

Max Cycles 5 

Expansion Threshold 15 

Layer Threshold 12 

Evaluation Method UCB-Tuned 

Max Simulations 25 (Fixed Constraint) 

2. FSM Parameters 

Parameter Name Parameter Value 

Power Pill Adjacency (Ambush) 5 Nodes Distance (Manhattan) 

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan) 

Ambush Distance Threshold 5 Nodes Distance (Manhattan) 

End Game Distance 4 Nodes Distance (Manhattan) 

3. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 33 minutes 89 seconds 65 milliseconds 

Average Time Per Game 12 seconds 55 milliseconds 

Longest Time Per Game 44 seconds 84 milliseconds 

4. Scoring 

Minimum Score Average Score Max Score 
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160 2705 8160 

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

16 91 215 

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten 

0 4 11 

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared 

0 0 0 

5. Monte-Carlo Tree Search Generation 

Minimum Generation Time Average Generation Time Maximum Generation Time 

608 ms 680 ms 842 ms 
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5.2.3 Scripted behaviour and Finite State Machine 

As stated in section 5.1.2.1.3, with this experiment setup we intend to determine whether or 

not there is a significant performance boost when utilising a hand-coded strategic based agent. 

3 separate configurations will be applied for testing to determine which set of configurations 

are considered ideal for testing. Based on the results outputted from this setup, we will 

conduct one final experiment combining the most optimal FSM parameters found from these 

configurations with our main implementation. 

Configuration 1 

Test Session ID: session_79C98964B07899B3A4D61CD07B83F208 

1. FSM Parameters 

Parameter Name Parameter Value 

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan) 

Ambush Distance Threshold 5 Nodes Distance (Manhattan) 

End Game Distance 4 Nodes Distance (Manhattan) 

Flee Change Distance 5 Nodes Distance (Manhattan) 

2. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 1 hour 6 minutes 31 seconds 

Average Time Per Game 39 seconds 91 milliseconds 

Longest Time Per Game 1 minute 14 seconds 8 milliseconds 

3. Scoring 

Minimum Score Average Score Maximum Score 

460 4646 10370 

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

46 150 311 

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten 

0 6 15 

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared 

0 0 0 
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Configuration 2 

Test Session ID: session_F1970BFDEFCD9E4A073C812C0A50DDB0 

1. FSM Parameters 

Parameter Name Parameter Value 

Ambush Threshold 4 Nodes Distance (Manhattan) 

Flee Threshold (Ghost Adjacency) 5 Nodes Distance (Manhattan) 

End Game Distance 4 Nodes Distance (Manhattan) 

Flee Change Threshold (Return to Wander) 3 Nodes Distance (Manhattan) 

2. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 1 hour 2 minutes 38 seconds 

Average Time Per Game 37 seconds 48 milliseconds 

Longest Time Per Game 1 minute 40 seconds 76 milliseconds 

3. Scoring 

Minimum Score Average Score Maximum Score 

850 4065 14760 

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

73 162 393 

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten 

0 5 20 

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared 

0 0 1 
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5.2.4 Pure MCTS approach 

The same MCTS configurations will be applied to the MCTS-based agent as our main 

implementation (as stated in Configuration 1). The directions in which the Ms. Pac-Man agent 

will head in will be based entirely on the results that are generated from the search-tree. Our 

aim with this experimental setup is to determine how effective using the Monte-Carlo Search 

Tree is. 

Configuration 1 

Test Session ID: session_0554FF1D685CB94E47F3D4040CB7030F 

1. MCTS Parameters 

Parameter Name Parameter Value 

Max Cycles 5 

Expansion Threshold 3 

Layer Threshold 7 

Evaluation Method UCB1 

Max Simulations 7 (Fixed Constraint) 

2. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 1 hour 7 minutes 6 seconds 

Average Time Per Game 13 seconds 9 milliseconds 

Longest Time Per Game 31 seconds 28 milliseconds 

3. Scoring 

Minimum Score Average Score Maximum Score 

20 1346 3230 

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

2 107 213 

Minimum Ghosts Eaten Average Ghosts Eaten Maximum Ghosts Eaten 

0 0 5 

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared 

0 0 0 
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4. Monte-Carlo Tree Search Generation 

Minimum Generation Time Average Generation Time Maximum Generation Time 

93 ms 144 ms 250 ms 
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Configuration 2 

Test Session ID: session_694C95EAF7BD03FE1FF9B6C6269FC766 

Due to the improved performance noted in our Main Implementation when put against the 

UCB1 formula, this configuration aims to determine what the performance of the MCTS 

algorithm is like when it makes use of the UCB-Tuned formula. 

1. MCTS Parameters 

Parameter Name Parameter Value 

Max Cycles 5 

Expansion Threshold 3 

Layer Threshold 7 

Evaluation Method UCB-Tuned 

Max Simulations 7 (Fixed Constraint) 

2. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 1 hour 4 minutes 5 seconds 

Average Time Per Game 11 seconds 43 milliseconds 

Longest Time Per Game 35 seconds 2 milliseconds 

3. Scoring 

Minimum Score Average Score Maximum Score 

160 1145 3070 

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

16 86 158 

Minimum Ghosts Eaten Average Ghosts Eaten Maximum Ghosts Eaten 

0 0 4 

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared 

0 0 0 

4. Monte-Carlo Tree Search Generation 

Minimum Generation Time Average Generation Time Maximum Generation Time 

110 ms 186 ms 312 ms 
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Configuration 3 

Test Session ID: session_ 4A3E1C7D84159273F027EF0B6C258CD8 

To further determine whether a more lenient simulation constraint can improve the 

performance of the agent, we reused the same evaluation method as the first configuration and 

increase the amount of configurations that it was allowed to do. 

1. MCTS Parameters 

Parameter Name Parameter Value 

Max Cycles 5 

Expansion Threshold 5 

Layer Threshold 7 

Evaluation Method UCB1 

Max Simulations 12 (Fixed Constraint) 

2. Other Results 

Result Name Result Value 

Total Games 100 

Total Simulated Time 1 hour 4 minutes 8 seconds 

Average Time Per Game 13 seconds 93 milliseconds 

Longest Time Per Game 42 seconds 76 milliseconds 

3. Scoring 

Minimum Score Average Score Maximum Score 

340 1446 3120 

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten 

34 118 216 

Minimum Ghosts Eaten Average Ghosts Eaten Maximum Ghosts Eaten 

0 0 3 

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared 

0 0 0 

4. Monte-Carlo Tree Search Generation 

Minimum Generation Time Average Generation Time Maximum Generation Time 

265 ms 325 ms 453 ms 
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5.3 Analysis and Critical Evaluation 

5.3.1 Finite State Machine and Scripted Behaviour 

 

Figure 16 - Scoring output from the scripted behaviour agent. 

 

Figure 17 - Pills eaten from the scripted behaviour agent 

5.3.1.1 Configuration 1 

Immediately we can tell that an AI with scripted controls is capable of generating a high 

enough score in the first level of the game with a resulting maximum score of 10000. 

Additionally we see that the Ambush & Hunt strategy on average is working appropriately 
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due to the average count of ghosts being eaten totalling at 6 per game and the max amount of 

ghosts eaten in out of the 100 games is 15. As a result, the greedy-random strategy presented 

by (Thompson et al., 2008) for evaluating the best route to take is being applied well 

considering that the highest amount of pills consumed is a 311 and on average the agent will 

take 164. 

5.3.1.2 Configuration 2 

In an effort to determine the most optimal hand-coded strategies, we altered the Finite State 

Machine parameters slightly to see whether we could obtain any better performance from the 

agent should the agent be allowed to leave the Flee state quicker. With the adjustments 

applied, the result set returned appears to be very positive with a maximum score of more than 

14,000 and on average the agent is scoring approximately 4,000. If we were to compare this 

configuration with the former, we can determine that by enabling the agent to get out of the 

Flee state early on that the agent is capable of scoring better and losing less. Strangely 

however, we noticed that the time in which the agent survives for within the game is 

substantially less than the first configuration. 

5.3.2 Pure MCTS Approach 

 

Figure 18 - Scoring output for our Pure MCTS agent 
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Figure 19 - The pill consumption scoring from our Pure MCTS agent 

With the results from this test we begin to see some of our concerns mentioned in the 

literature review come to light. For instance, when the Pac-Man agent consumes the majority 

of the pills at one part of the level, we begin to notice that the returning results from the agent 

are consistently 0 meaning that the agent has no particularly focused direction to be headed in. 

In comparison to our main implementation, we can see that the agent tends to survive for a 

longer period of time when using nothing but the MCTS algorithm inside the maze. This is 

consistent with both configurations under this test bed. This leads us to believe that perhaps 

by applying the MCTS algorithm in other states there will be a higher rate of survival. For 

instance, we would allow for the algorithm to influence the pathfinding measures as stated in 

(Tong and Sung, 2010). 

5.3.2.1 Configuration 1 

We can see immediately that through using a Pure MCTS strategy that the scoring is typically 

lower due to the lack of ghosts that were eaten by the agent during the test session. This 

consequently suggests that for the most optimal score, there has to be some form of strategic 

input in the way that the Ms. Pac-Man agent moves within the maze. Furthermore we can see 

that the MCTS algorithm is capable of navigating the maze efficiently based on the pills that 

are available through each C-Path. This is demonstrated by our results in which a maximum 

of 213 pills out of 250 were consumed and the average round time was approximately 2 

minutes. 
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During our preliminary tests with this configuration we did notice that the scoring of the trees 

that headed towards the direction of edible ghosts didn’t necessarily provide a more rewarding 

return for the agent. We believe that this could be something to do in the way that the UCB 

scoring formula averages out the scores from child nodes within branches of the MCTS 

search tree. 

5.3.2.2 Configuration 2 

Similar to how we approached the second configuration in the in the testing of the main 

implementation, we decided that this time around we wanted to determine how well the UCB-

Tuned formula stated in (Auer et al., 2002) operated on its own. Surprisingly, there was no 

drastic performance difference between the usage of this formula and that of the UCB1 that 

was used in the previous configuration. 

Furthermore, it would appear that when the UCB-tuned formula is used during the back-

propagation process in the generation of the tree that there is on average a slight increase in 

latency in contrast to the UCB1 formula. 

5.3.3 Main Implementation 

 

Figure 20 - Scoring output for our Main Implementation 
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Figure 21 - Pills eaten by our Main Implementation 

5.3.3.1 Configuration 1 

Comparing to our previous test conducted with the Scripted Behaviour controlling our agent, 

we can see that overall by taking the score into account that the MCTS algorithm combined 

with a fixed strategy is returning a score that is better than our agent with purely hand-coded 

strategies. Furthermore, we can see that there are safer traversals across the maze considering 

that on average more ghosts are being, and at best more are being consumed also. 

Although these results are highly positive, it’s worth mentioning that the agent is very much 

capable of losing within a short period of time and that there is a larger spread between the 

lowest and max score. After evaluating the screenshots that were captured at the end of each 

game, it’s fair to say that the agent was caught out frequently when the ghosts performed a 

pincer move. As expected, more frequently than not, the Red ghost was responsible for eating 

Ms. Pac-Man. 

Lastly, we can see that the generation times of the MCTS algorithm are within appropriate 

ranges based on the previous work that has been conducted using this algorithm by 

(Samothrakis et al., 2011). Referring back to section 2.1 in the Literature Review, if we were 

to apply this agent to the original software of Ms. Pac-Man through the means of a screen 

grabbing interface, then the response times that our agent is returning would be viable. Should 

we wish to pursue this option of agent implementation in the near future, then by using this 

particular configuration it would be possible. 
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5.3.3.2 Configuration 2 

Using this configuration, we aimed to see if more appropriate decisions would be made at 

each junction within the maze due to a more lenient fixed constraint that was applied to the 

generation of the MCTS tree. Having run the tests using the aforementioned configuration, we 

noticed that there was no real improvement in performance and the scoring was in fact worse. 

This might have been due to the overreaching nature of the MCTS tree. What is meant by this 

is that, considering it is simulating so many future game states that are not necessarily 

relevant to the immediate decision of Ms. Pacman, it might mean that the agent is selection 

turns based on results that are not even relevant. 

The statistics regarding the consumption of ghosts during their mortal state is a similar set of 

data to the previously used configuration suggesting that the Ambush and Hunt states are 

performing just as well. We could argue that the minimum ghosts eaten being 0 is due to the 

Wander state causing the agent to get killed before even reaching the power pills within the 

maze. 

Understandably the MCTS generation times are taking longer time to complete due to the fact 

that we are allowing it more time to simulate branches across the tree. With the maximum of 

340~ ms to complete the computation of the MCTS, this would still be considered respectable 

should we later make the agent engage with a screen-scraping interface for the original 

software of the Ms. Pac-Man game. 

5.3.3.3 Configuration 3 

As we stated within section 2.1, we believed that it would be appropriate to apply various 

methods of tree evaluation when enabling our Ms. Pac-Man agent to choose the most optimal 

path to head in. Based on the research demonstrated by (Pepels and Winands, 2012) we can 

see that there is a higher consistency in better scores when the simulation constraint is a lot 

more lenient in comparison to our previous configurations used. Additionally, within the 

results they displayed, the UCB-tuned formula demonstrates much better results (refer to Fig. 

17). 

Having observed the results that we gained from our tests, we can certainly see that we 

generate a better maximum score from our agent in contrast to the other configurations of our 

main implementation. However, it’s fair to notice that the average is of a lower number thus 

displaying that there was a far less consistency in the performance that was outputted from the 



71 
 

agent in comparison to the previous sets of configurations. Pill consumption within the maze 

is relatively the same. 

6.1 Conclusion 

6.1.1 AI Performance 

 

Figure 22 - Chart displaying the total survival time of all our agents and their respective configurations 

 

Figure 23 - Graph demonstrating the total sum of ghosts that were consumed by each agent. 
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Figure 24 - Pills eaten out of all our agent implementations 

Through testing each respective agent, we came across a varied set of results that enabled us 

to determine that heuristics best-first search method such as Monte-Carlo Tree Search, is 

better off when making use of a fixed-strategy such as our Finite State Machine. This can be 

seen in the amount of ghosts that are consumed between our main implementation and that of 

a Pure MCTS approach. Referring to Fig. 23, we can see that both the scripted-behaviour 

agent and our main implementation are competitive in that they are capable consuming a large 

number of ghosts within a game. In a similar sense, if we look at Fig. 24 we can see that our 

main implementation was capable of consistently consuming more pills than our Pure MCTS 

agent. 

This leads us to believe that by making use of fixed strategies with MCTS, it enables our 

agent to be substantially more competitive, than if we used MCTS on its own. As discussed 

within section 2.3, we mentioned that making use of an Ambush strategy similar to that of 

(Thawonmas and Ashida, 2010) would be beneficial in enabling our ghost to acquire more 

points. Fortunately as we can see from Fig. 23, this has been largely the case. 

In addition, we noticed that when our agent made use of nothing but the MCTS algorithm, the 

time in which it survived on average was marginally smaller to that of our main 

implementation (refer to Fig. 22). This leads us to believe that making use of the intermediary 

Flee state is an effective move for enhancing the time in which it survives for. We assume 

that this is due to the fact that for a short period of time the agent will aim to move as far 
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away as possible from the nearest ghost before resuming to Wander. This is so that should the 

MCTS tree fail to return an accurate state based on the simulation returning different results to 

the active game state, then we are able to respond to it appropriately. 

More surprisingly, the usage of the Greedy-Random AI (Thompson et al., 2008) demonstrated 

that there was significant improvement in pill consumption over our main implementation 

which went against our initial expectations. With our implementation of the MCTS algorithm 

was intended to navigate the AI within the maze based on the C-Paths that provided the most 

rewarding score output for the agent. Instead, the scripting behaviour demonstrated that by 

simply counting the available pills in every direction and navigating based on that premise 

was sufficient enough, and was even capable of moving onto the next level. 

The reason for this may have something to do in the way the agent evaluates potential paths to 

take at each direction. Considering that it takes into account the future game states of from 

junctions that are not immediately adjacent to the agent, it might force the agent to not take an 

otherwise more rewarding path. This could be down to the fact that due to the stochastic way 

that the ghosts behave, the random simulations carried out within the generation of the tree 

could be rendered irrelevant. This is because the behaviour of the ghosts within simulation of 

the tree may not match that of the current game state that the agent is playing in. This relates 

to a similar idea presented within section 2.1 of our literature review, in that evolutionary 

algorithms are to be consistently thrown off due to the stochastic nature of the ghosts. 

Moreover, we can see that by experimenting with the likes of another node evaluation method 

such as UCB tuned that we do in fact achieve a worse scoring output. Referring to Fig. 20, we 

can see the maximum scoring output of the third configuration of our agent (UCB tuned) is 

better than the other configurations however struggling from a lower average. Similarly in the 

fourth configuration we are seeing worse performance overall suggesting a similar pattern. 

Comparing this to our Pure MCTS agent, we notice that the scoring output is just as weak 

when our agent makes use of the UCB-tuned evaluation method enabling us to conclude that 

there is no gain through the usage of the formula. 

Referring to the first and second configurations used for our main implementation, we noticed 

that the scoring outcome was in fact worse when we extended the simulation constraint. This 

leads us to conclude that using a smaller expansion of the tree will produce better results. We 

believe that this is due to the UCB score from the tree is returning values that are more 
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relevant to immediate game states. Refer to Fig. 20 to see the scoring difference between the 

two. 

It’s noted as well that out of all of our agent implementations, the agent that made use of 

scripted behaviour was the only one that was able to get onto the next level during testing. 

From this we can conclude that the Greedy-Random approach specified by (Thompson et al., 

2008), although negligent of adjacent ghosts, is in fact effective in clearing pills within the 

maze. This is reaffirmed by the fact that the same agent consumed a maximum of 392 pills 

during testing (refer to Fig. 19). Combined with the End Game strategy that our Main 

Implementation uses, it makes sense as to why it was capable of progressing onto the next 

level. The End Game strategy enables the agent to discover pills that are not immediately 

adjacent to it, therefore negating the need for the agent to randomly select a direction should it 

not find a pill within any available directions at a junction. 

While the scripted behaviour testing implementation appear to demonstrate better 

performance overall, there is still a possibility that the MCTS approach can be improved and 

eventually exceed that of our scripted agent. The reason we believe this is due to two set of 

results returned by our Main Implementation agent. The first configuration displayed better 

performance than that of second configuration purely because of subtle differences in the 

parameters used for the MCTS. 

We believe that if the MCTS parameters are adjusted accordingly through further 

investigation that there is the possibility that we could achieve an agent that can compete that 

of our Scripted-Behaviour agent. The problem lies in carrying out more testing with various 

parameters for both the FSM and the generation of the MCTS. It is noted however that we are 

hugely constrained by how many simulations we can carry out on the tree with our current 

implementation having reviewed the results for Configuration 4 of our main implementation. 

This constraint could perhaps be alleviated through further improvements with our choice of 

simulator. 

If we were to observe the aims and objectives that were outlined within section 1.1, it’s fair to 

note that we have successfully developed a high scoring agent that combines the functionality 

of a fixed-strategy approach along with the usage of a heuristics based search method. 

Additionally we can see that from the returned results that the AI is capable of generating 

high-level decisions within a reasonable time frame when using the appropriate parameters. 

Admittedly, the current performance of the agent lacks in comparison to that of our pure finite 
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state machine solution. It’s worth noting however, should the parameters used for the MCTS 

simulation be adjusted through iterative testing, we are confident that it would produce a more 

competitive agent for our main implementation. 

We have noticed that the AIs performance in terms of how fast it can generate a strategy 

through MCTS could be improved. While using a fixed constraint of 15 simulations we are 

seeing latency on average reaching 250 milliseconds. Having investigated this during the 

preliminary stages of testing, we concluded that it was mostly due to the way that the 

simulator was cloning objects. 

To conclude, we can see that a competitive and high-scoring agent emerges through the usage 

of both MCTS and Finite State Machines, however both the application of the MCTS 

algorithm and the configuration behind it could be improved significantly. For instance, we 

can see between the two UCB1 configurations that were used for our main implementation 

that they return different results. This leads me to believe that with further tweaking we can 

obtain even more competitive parameters leading to better performance. The scores 

demonstrated in the second configuration used for the scripted agent displayed a better min 

and max scores out of the 100 that were played in total. This means that in regards to our 

objectives, we were unable to successfully create a hybrid agent results in better performance 

to that of a scripted agent overall. The scripted-behaviour agent is based on the work 

demonstrated by (Thompson et al., 2008). We do recognize however that our scripted 

behaviour agent made use of several more states and methods to achieve the score that it did. 

However, the results still state that it is capable of generating better results than that of our 

main implementation. 

Although we have concluded that it is an arduous task to select what the ideal configurations 

between the two combined methods of AI behaviour are, we believe it is worth pursuing. This 

is demonstrated by the performance improvements displayed over the Pure MCTS approach 

when a hard-coded strategy is applied. We should also investigate the possibility of 

implementing the MCTS algorithm in other states so that we can use its heuristics for other 

purposes. As stated in (Browne et al., 2012), there are various ways in which the result output 

of a search-tree can be evaluated and such this requires further investigation before we rule 

out MCTS entirely. Potential usage of the algorithm in other states could include the likes of 

biasing the reward output to favour paths with power pills, or simply if there are any pills to 

begin with (End Game). 
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7. Future Work 

7.1 Agent Improvements 

7.1.1 Application of MCTS 

After carrying out the experimentation runs, we noticed that the usage of the UCB-tuned 

algorithm did not display any real beneficial advantage to node evaluation within the tree. 

This may have been largely down to how our tree was structured, as mentioned by (Pepels 

and Winands, 2012) to utilise the appropriate evaluation function would require the correct 

structure of the tree and how it is expanded (min-max etc.). Nonetheless, the end of game 

results shows that there was no improvement in the score that was achieved by the agent when 

used on its own. In the future, should we decide to proceed with this evaluation formula 

again, we would have to ensure that the generation of the tree was done so in such a way that 

would enable for such an evaluation formula to work. 

We also believe, in the future, that this algorithm could be used as method of danger detection 

rather than a means of directing the agent through the maze. We relate this idea to what was 

presented by (Tong et al., 2011), in which they demonstrated that generating the shortest path 

to the farthest pill within the maze whilst conducting shallow MCTS searches that they gained 

promising results from their agent. In context to our main implementation, the MCTS 

algorithm could influence the generated path of the agent by returning whether or not the 

current direction is dangerous. If it was discovered to be dangerous, then we would re-plan 

and find an alternative route. 

The reason that we do this is because of the way that the current scripted behaviour works in 

the End Game state. Currently it is simply reactive to the radius in which the ghost is in 

comparison to the agent. This means that although the ghost could be close, it doesn’t 

necessarily mean that it is of a threat to the agent. For instance, if we refer to section 5.1.5 in 

regards to the ghost behaviour within our simulator solution, we notice that the behaviour of 

the brown ghost is completely stochastic. This means that if our agent was adjacent to the 

Brown ghost, it would erroneously change its currently active state to fleeing when the ghost 

wouldn’t necessarily be approaching the agent. Making use of a shallow MCTS simulation 

would counter our previous concerns with the algorithm. An example is that it would provide 

us with relatively accurate results, as the simulation would return what would be likely to 

occur in immediate future game states. Due to the shallow nature of tree simulation, we can 

be left assured that the future simulated states would be considered relevant to the direction 
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that our agent is heading in. The reason for this is that there would be a smaller possibility 

that the respective ghost’s behaviour (refer to section 5.1.5) will change drastically a few 

moves ahead from the agent’s current position. 

7.1.1.1 Improving the cloning of game states 

We noticed that during the simulation of the MCTS algorithm that one of the major 

bottlenecks for the algorithm was the way in which the game state was being cloned. In order 

for the MCTS algorithm to operate, the current game state has to be copied numerous times to 

be simulated on. Unfortunately, due to the way that the original simulator source code works, 

it meant that it originally took a long period of time to deep-copy the game state. Due to the 

way that the GameState object is developed, the maze information of the other levels within 

the game are cloned a long with the one that is being actively used.   

This was originally considered costly as we were never actively making use of the other levels 

data, so it unnecessary for it to be cloned. In the end, we attempted to resolve the issue by 

only ever cloning the map that was being actively used and the next map within the game. 

This is so that the level changes to the next during the simulation of the MCTS tree, then the 

data is available for it to use. It is important to note that it is essential for this information to 

be available considering that the level progression reward has to be applied to the MCTS 

evaluation. We feel that this could be optimised further considering that during our tests we 

managed to hit 500 ms when using the UCB-Tuned evaluation method, with a fixed constraint 

of 25 simulations. 

Like many other AI controller interfaces for Ms. Pac-Man agents, our simulator through the 

use of discretization, presents the Ms. Pac-Man maze layout as a series of nodes (Fitzgerald 

and Congdon, 2009). This is the same for the simulator that we used, except for each node 

within the game also contains a reference to the 4 adjacent nodes to its position in the maze. 

This is a problem during the cloning state, considering that it will automatically attempt to 

clone the 4 adjacent nodes as the Node object holds a reference to those within its class 

definition. This then initially lead to a stack overflow issue when attempting to clone the 

entire game state. In the end, we prevented this by simply storing a 2D array of enumerable 

values that displays the state of a given node in our graph. 

In the future we aim to refactor the simulator that we use by changing how the nodes are 

represented in the maze so that there isn’t a similar time consuming issue. Moreover, we aim 

to speed up the rate that the simulator clones the game state object by removing the amount of 
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objects that it has to copy, and simply copying vital information required for the simulation. 

Upon achieving this, we may be able to see some further improvements in terms of lower 

latency and a less strict constraint for our simulation threshold. 

7.1.2 Counter-acting Pincer Moves 

Upon evaluating the screenshots that were generated 

through testing, we noticed that across all our testing 

implementations our agent was frequently losing when a 

pincer move was formed. We noticed that this was 

occurring mostly within the corners of the maze, which is 

similar to what (Tong and Sung, 2010) stated when they 

introduced the idea of a danger map for dangerous parts 

of the maze. We believe that this could be in conflict with 

the aforementioned Ambush strategy that we aimed to 

implement. The flaw in the Ambush strategy is that the 

agent will remain stationary within the corner of the 

maze until a ghost is close. This could suggest that using 

a pure Ambush strategy without any kind of foresight might cause problems for the agent 

should we pursue this strategy feature. We could implement a more in depth Ambush 

algorithm by taking into consideration the fact that at least two of the ghost move in a similar 

manner (Red and Pink). In addition, we may have to use a more effective means of allowing 

our agent to retreat from a dangerous situation. Currently it makes use of the Flee state that 

simply states that the agent should move in the opposite direction to the ghost. This means 

that eventually the agent could end up in a no win situation if we fail to at least predict what 

could happen should the agent retreat down a certain path. 

Should we proceed to use MCTS in our future work, we most certainly will have to take into 

account the possibility of this occurring again and what effective ways could be utilized with 

our current methodology to counter-act it. In addition, we may have to use a more effective 

means of allowing our agent to retreat from a dangerous situation. Currently it makes use of 

the Flee state that simply states that the agent should move in the opposite direction to the 

ghost. This means that eventually the agent could end up in an awkward situation if we fail to 

at least predict what could happen should the agent retreat down a certain path. 

Figure 25 - Ms. Pac-Man being caught out 

by a pincer move in our Configuration 2 of 

Main Implementation 
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7.2 Re-evaluating our tools 

Revisiting the problems that were described within the literature review, the simulator most 

definitely offered a large sense of freedom and flexibility. This was demonstrated when it 

came to enabling us to modify the values that we required to change such as temporarily 

changing the behaviour of the ghosts. Furthermore it also meant that we had a fully 

configurable test bed for testing the MCTS algorithm with. The main issue that we faced 

however, when it came to the implementation of the MCTS algorithm with our own simulator 

was the inability to accurately render the screen while expensive computations were being 

done during each tick. While we adjusted settings for the tree growth and evaluation within 

our tests to determine where the CPU bottleneck was, we noticed that there were no real 

plausible differences regardless of the changes that we made. We hope that in the near future 

should we approach this method again that we would perhaps develop a simulator that utilises 

a graphics rendering API that places the work load onto the GPU such as OpenGL or DirectX.  

The reason we believe that this would be a suitable idea would be due to the way that the 

current implementation works now. Our current simulator uses the likes of GDI+ and 

WinForms which in most instances utilises the CPU for its graphical processing (Microsoft, 

2012). As mentioned within section 2.1, we detailed the costly nature of the MCTS algorithm 

on the CPU and therefore combining with additional strain of rendering would explain the 

current issues we are having. This would include the visual artefacts such as inconsistent tick 

rates in the rendering of the graphical buffer that we were experiencing. This meant that once 

MCTS calculations had completed, any instructions on the call stack for rendering the 

simulator to the screen would be completed all at once. Presuming that we wish to remain 

with the functionality of the C# programming language, we could pursue the possibility of 

using the now deprecated by functional XNA game framework, or a more modern and 

managed interface for DirectX such as SharpDX (Mutel, 2010). 

7.3 Usage of MCTS with other games 

As we can see from our research, the application of MCTS is very much ideal to the game of 

Ms. Pac-Man as the future moves can be consolidated to the AI having to choose between 4 

different directions in which the agent could move in. Likewise, this has been previously 

demonstrated with games such as Go where equally there is a high branching factor of 

decisions that must be evaluated rapidly at each tick (Browne et al., 2012). Our concern with 

the usage of the algorithm in other games is that the game state would have to be discretized 

in a way that would be appropriate for MCTS simulations. For instance, if we were to 
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consider a game based in an open world and 3D environment, there would be substantially 

more data to consider and it would be harder to determine what parts of the game state we 

would simulate. No longer is the agent then required to move in simply 4 directions but 

instead depending on the game, the agent may have to consider a variety of other factors that 

would have to be simulated in order to make appropriate decisions at each tick. Fortunately 

within the game of Ms. Pac-Man the process of doing this is rather straight forward as we can 

consider each junction within the maze a point of decision for the agent. This then depends on 

how appropriately the environment would be discretized so that once simulation is completed, 

the outputted results become dependable. 

7.4 Closing Statement 

Referring back to section 1.1 of our aims and objectives, we can say with certainty that we 

have successfully applied the Monte-Carlo Tree Search algorithm with the strategy of a finite 

state machine.  Having investigated the current literature surrounding the topic of MCTS, it’s 

evident that there are large advancements in the area, with countless methods of how the 

algorithm can be applied. However, while demonstrating positive results through our testing, 

we unfortunately can still conclude that it does not output the same level of performance as 

that of an agent which uses purely scripted behaviour.  Through the implementation of the 

agent we recognized that while responding appropriately to the ghosts in the maze, there were 

certain instances in which it would fail to detect danger down C-Paths adjacent to its position. 

We are lead to believe at this stage that it is down to several reasons. The first being the 

behaviour of the ghosts cannot be depended upon during the simulation of the tree due to their 

stochastic nature as stated before in section 1. Regardless of how many times the tree can be 

simulated to conclude the reward of a given path in the maze, there is always the possibility 

that the ghosts will behave differently within the current game state. 

The MCTS algorithm is perhaps still a viable method should it be applied to our agent 

differently. Referring to Fig. 23, the reason that our main implementation was capable of 

eating ghosts at all was because it was not depending on the path generation produced by the 

MCTS. In our opinion, it would be better to make use of the approximations generated by 

MCTS as a supplement to our agents understanding of the environment rather than a direct 

form of navigation.  
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9. Appendices 


