
University of Derby

School of Computing & Mathematics

A project completed as part of the requirements for the

BSc. (Hons) Computer Games Programming

entitled

IMPLEMENTATION OF HIGH-LEVEL

STRATEGY FORMULATING AI IN MS.

PAC-MAN

Luc Shelton

lucshelton@gmail.com

2012-2013

2

Abstract

The game of Ms. Pac-Man was first released in 1981. It has since been recognised by

academics as an interesting test-bed for developing AI that is capable of playing against a

stochastic opponent. As such, numerous journals have been published to the World Congress

of Computational Intelligence in Games demonstrating various methods of producing

competitive AI. Within our paper we aim to determine whether an agent with a hard-coded

strategy applied with heuristic simulations, is capable of producing a high-scoring AI than

those previously demonstrated.

3

Contents

University of Derby .. 1

School of Computing & Mathematics .. 1

A project completed as part of the requirements for the ... 1

BSc. (Hons) Computer Games Programming ... 1

entitled .. 1

Abstract ... 2

Acknowledgements .. 6

1. Introduction .. 9

1.1 Aims & Objectives ... 10

2. Literature Review ... 11

2.1 Methods of agent implementation .. 11

2.1.1 Screen Capturing .. 11

2.1.2 Simulator .. 12

2.2 Monte Carlo Tree-Search .. 14

2.2.1 Multi-armed bandit problem .. 15

2.2.3 Ms. Pac-Man MCTS implementations ... 17

2.2.4 Endgame approaches .. 19

2.2.5 Other approaches .. 20

2.3 Decision weighting and Finite State Machines ... 22

2.4 Ghost Avoidance and Detection ... 25

2.4.1 Pincer moves .. 25

3. Implementation ... 27

4. Agent Design .. 28

4.1 Tree Search Implementation (MCTS) .. 29

4.1.1 Structure ... 29

4.1.2 Usage .. 29

4.1.3 Direction Selection ... 30

4

4.2 Considerations .. 31

4.2.1 Simulation Cycles .. 31

4.2.2 Tree Depth .. 32

4.3 Finite States ... 33

4.3.1 (Default) Wander.. 33

4.3.2 Flee ... 34

4.3.3 Ambush .. 34

4.3.4 Hunt .. 35

4.3.5 End Game ... 35

4.4 Development ... 36

4.5 Modifications .. 37

4.5.1 External File Management ... 37

4.5.2 Cloning Game States .. 37

4.5.3 Capturing screen buffer and saving to images ... 38

4.5.4 Logging information .. 39

4.5.5 Simulator .. 40

5. Research & Analysis .. 42

5.1 Setup ... 42

5.1.1 Monte-Carlo Tree Search Parameters .. 42

5.1.2 Finite State Machine Parameters .. 43

5.1.3 Testing Machine ... 44

5.1.4 Controller ... 45

5.1.5 Ghost Behaviour ... 48

5.2 Data Collected and results .. 49

5.2.1 Folder Structure .. 49

5.2.2 Main Implementation ... 51

5.2.3 Scripted behaviour and Finite State Machine .. 59

5.2.4 Pure MCTS approach ... 61

5

5.3 Analysis and Critical Evaluation .. 65

5.3.1 Finite State Machine and Scripted Behaviour .. 65

5.3.2 Pure MCTS Approach .. 66

5.3.3 Main Implementation ... 68

6.1 Conclusion .. 71

6.1.1 AI Performance .. 71

7. Future Work .. 76

7.1 Agent Improvements ... 76

7.1.1 Application of MCTS ... 76

7.1.2 Counter-acting Pincer Moves ... 78

7.2 Re-evaluating our tools ... 79

7.3 Usage of MCTS with other games .. 79

8. Bibliography & References .. 81

9. Appendices ... 83

6

Table of Figures

Figure 1 - A screenshot of the game on the first level .. 9

Figure 2 - The simulation of the play out and the selection of a child node. (Pepels and

Winands, 2012) ... 14

Figure 3 - Branching decision points within the maze used for MCTS evaluation. The blue

circle represents the position of Ms. Pac-Man. (Ikehata and Ito, 2011) 15

Figure 4 – The UCB1 formula used for evaluating tree nodes as demonstrated by (Auer et al.,

2002) ... 16

Figure 5 – The UCB-tuned algorithm as demonstrated by (Samothrakis et al., 2011) 17

Figure 6 - Danger map of the first maze within Ms. Pac-Man (Ikehata and Ito, 2011) 18

Figure 7 - Ms. Pacman can't find a suitable path to take as the paths are returning with a 0

reward due to lack of adjacent pills. ... 19

Figure 8 - The abstract method stub that is provided to us through the simulators API. 27

Figure 9 - The direction that has to be returned to the simulator at each tick. 27

Figure 10 - Simple function for returning the next possible move when traversing irregular C-

Paths ... 30

Figure 11 – Random-No-Inverse: The logic used for the simulation cycles in the tree 32

Figure 12 - Diagram displaying the finite state machine layout of our agent. 36

Figure 13 - An example image that is captured from the simulator upon arriving at a junction.

 .. 38

Figure 14 - The TestStats object that is serialized when the testing is complete. 40

Figure 15 - The appearance of the simulator during runtime. The debug console (left) and the

visual interface of the game state (right). ... 42

Figure 16 - Scoring output from the scripted behaviour agent. .. 65

Figure 17 - Pills eaten from the scripted behaviour agent .. 65

Figure 18 - Scoring output for our Pure MCTS agent .. 66

Figure 19 - The pill consumption scoring from our Pure MCTS agent 67

Figure 20 - Scoring output for our Main Implementation .. 68

Figure 21 - Pills eaten by our Main Implementation .. 69

Figure 22 - Chart displaying the total survival time of all our agents and their respective

configurations ... 71

Figure 23 - Graph demonstrating the total sum of ghosts that were consumed by each agent. 71

Figure 24 - Pills eaten out of all our agent implementations .. 72

7

Figure 25 - Ms. Pac-Man being caught out by a pincer move in our Configuration 2 of Main

Implementation ... 78

8

Acknowledgements

I would like to take a moment to thank dissertation supervisor Dr. Tommy Thompson for his

patience, and providing me with highly valued guidance as I embarked upon this challenging

project.

In addition, I would like to acknowledge the loving support of my peers on the degree as well

as that of my mother, Françoise’s kind words during tough times when I needed it most.

Lastly, I would like to extend my thanks to Tim Leonard, Matt Lowe, Hassan Ghoncheh and

Darren O’Connor for giving me critical feedback and consequently enabling me to improve

my work at every step of the way.

9

1. Introduction

The game of Pac-Man was first released in arcades

during the 1980s and featured Pac-Man himself, along

with 4 enemy ghosts called; Blinky, Pinky, Blue and

Clyde. The objective of the game was simple in that the

player had to avoid (or consume) the 4 ghosts whilst also

collecting all the pills within the maze. Should the player

have consumed a power-pill found inside the maze, the

ghosts would become edible for a short period of time.

Upon consumption of a ghost the player would score a

larger bonus than they would from a normal pill and the

ghost would then return to the maze in an immortal state.

Once the player consumed all the pills within the maze,

the level would change layout and the game would then become progressively harder,

increasing the speed of the ghosts and decreasing the time in which the ghost were edible

(Galván-López et al., 2010). Shortly after the release of Pac-Man, Ms. Pac-Man was released

as a sequel to the game and contained identical gameplay mechanics however the enemy

ghosts portrayed distinct behavioural differences from the previous version. The main

difference was that the ghosts within the first game were deterministic and for the most part

considered predictable (Pittman, 2011). Instead, in the game of Ms Pac-Man not only was

Clyde renamed to Sue, but the artificial intelligence (AI) behind the ghosts became

unpredictable and for the most part demonstrated stochastic (random) behaviour (Galván-

López et al., 2010).

The stochastic nature of the ghosts soon became an interesting problem space for academics

when the first publications emerged demonstrating this was by (Koza, 1992). They detailed

that Ms. Pac-Man was one of the possible test beds when it came to applying genetic

programming within games. Since then, the conference on Computer Intelligence of Games

(CIG) has been conducting a competition to apply various methods of agent behaviour and

implementation to determine which outputs the most optimal score.

Recent papers on the topic of developing high-scoring agents for Ms. Pac-Man mention the

usage of a new method of predicting future game states based on recursive random

simulations using a tree-based structure such as the Monte-Carlo Tree Search algorithm. One

of the first academic journals presenting the idea was (Robles and Lucas, 2009) , in which

Figure 1 - A screenshot of the game on the

first level

10

they demonstrate a simple tree search structure for determining the reward from future game

states at each junction within the maze. From the results of their research they demonstrate

positive results and a good premise for extending such an idea. Furthermore we have begun to

see promising results from the likes of rule-based fixed-strategy agents such as ICE Pambush

3 (Thawonmas and Ashida, 2010), of which won the CIG Ms. Pac-Man competition in 2009.

In this paper, we aim to determine whether it is considered possible to achieve a high scoring

agent (AI) when applying the best-first search heuristics of the Monte-Carlo Tree Search

(MCTS) algorithm along with fixed state-based strategies. Considering the research that has

been conducted previously regarding the two respective areas of Ms. Pac-Man AI, we feel

that by developing a finely tuned hybrid can produce competitive results in comparison to the

other entrants of the same competition. As of yet, we have yet to see such an agent that makes

use of a heuristic search method while implementing fixed hand-coded strategies. We believe

that by directing the usage of such methods by applying certain tactics means that we can

create an optimal agent within the game of Ms. Pac-Man.

1.1 Aims & Objectives

After reviewing an array of relevant academic and non-academic articles, we have come to

decide that the aims of our research are;

• Apply an optimized form of a heuristic based best-first tree search and combine the

return values with hand-coded rules (Finite State Machine).

• Conclude whether the utilisation of hand-coded conditions through the means of a

finite state machine is preferable to high-level heuristic decision making.

• Determine if the computational cost of implementing such an algorithm can be

reduced, enabling for more competent AI within games of high branching moves.

• Produce a high scoring agent within the game of Ms. Pac-Man

o The agent should be capable of at least proceeding onto the next level.

o The agent should also, on average, produce better results than other rule-based

look-ahead agents that have entered the IEEE CIG conference in previous

years (refer to Literature Review).

11

2. Literature Review

In recent years, academics have been coming together annually for the competition known as

the Ms. Pac-Man AI Competition held at the IEEE Computer Intelligence and Games

Conference (CIG). The competition organised and moderated by Philipp Rohlfshagen, David

Robles and Simon Lucas from the University of Essex involves contestants to designing AI

controllers to play the classic arcade game of Ms. Pacman. Consequently due to the

unpredictable nature of the enemy ghosts, it has proven to be a challenging test-bed for agent

behaviour, and as such has become the basis of the competition.

The goal of the competition is develop a high-score agent using any AI methodologies

necessary (Robles and Lucas, 2009). Most noticeably there have been attempts to use methods

such as neural networks (Gallagher and Ledwich, 2007) with temporal difference learning (De

Bonet, 2006), fuzzy systems (Handa and Isozaki, 2008) and population based incremental

learning (Gallagher and Ryan, 2003). This has meant that numerous publications have been

made in regards to how to approach the random behaviour of the opponent and when to

prioritise the rewards within the game to gain the highest possible score.

Within our literature review we aim to demonstrate the current research in regards to agents

that use finite state machines and event driven behaviour, as well as heuristic based best-first

search algorithms such as Monte-Carlo Tree Search. Additionally we aim to determine the

most effective methods of applying these kinds of behaviour, and what has been proven as

successful in previous conferences and academic journals.

2.1 Methods of agent implementation

To date, there have been various methods of agent implementation that use certain methods of

game simulation for the purpose of executing AI behaviour. At the IEEE CIG 2009

conference, it was displayed that most agents utilized the likes of screen-scraping interfaces

for enabling agent controllers to behave. In addition academics have used simulators to gain

further control over the game to better determine how agent behaviour alternates when certain

factors are removed from the game.

2.1.1 Screen Capturing

Utilising the original Microsoft Ms. Pacman Revenge of the Arcade game software, screen

capturing involves the intercepting the graphics buffer of the computer’s screen. Afterwards it

is then analysed remotely by another piece of software controlling the AI controller for the

player. A grid based layout is typically generated from the image that is taken from the buffer,

12

and then further used to determine the next moves by the artificial controller (Fitzgerald and

Congdon, 2009). The reason for this is so that the game state can be discretised by the

software so that the agent controller can observe a set of perfect information for the given

state.

(Robles and Lucas, 2009) discuss this with their agent implementation and determine that on

average there is an 80 millisecond delay between image processing and game state

recognition. A timeframe that, considering the movement speed at which Pacman is going is

quite considerable as the agent requires time to compute a decision. The agent in this case is a

separate process operating on top of the original software which means that it’s running in a

completely different thread. This means that providing that the screen capture adapter is

accurate or even fast enough, it could cause for the agent to miss junctions within the levels

maze environment (Tong and Sung, 2010). Within the game of Ms. Pac-Man we consider a

junction to be a point in the maze in which Ms. Pac-Man is able to go in more than or equal to

3 possible directions.

(Fitzgerald and Congdon, 2009) refactored the original code by Simon Lucas in an effort to

reduce this latency. This was achieved by ignoring certain features of the maze such as walls

during the processing of the graphics buffer. Considering that their implementation simply

requires that the controller return the intended direction, it’s more efficient to discretise the

game as a graph of nodes. They do go on to mention that there are some limitations with the

usage of screen capturing. For example; should a ghost be hovering on top of a pill within the

game state, then during the period in which the image is parsed, it will be close to impossible

to recognise that the ghost is on a pill. This is troublesome, however it is possible to prevent

this by storing information from previous screen captures and aggregating them into a single

set of data (Fitzgerald and Congdon, 2009). Pursuing this option does mean that agent is able

to obtain the most accurate score within the game; however it loses valuable time that could

otherwise be used for expensive algorithm calls on the CPU required to determine the

decisions of the AI agent.

2.1.2 Simulator

The usage of a simulator enables for larger control of how AI agents can be implemented,

however it causes there to be larger inaccuracies in how the actual game is represented as

well. Notably (Fitzgerald and Congdon, 2009) mention that using a simulator simplifies the

task somewhat as it offers the AI agent direct access to the game state include the behaviour

of the enemy ghosts. This is concluded through the demonstration of using the Monte Carlo

13

Tree Search (MCTS) algorithm as referred to in section 2.2, due to the probabilities required

in determining the behaviour of the ghosts and additionally if we were to refer back to the

problems noted in the previous section. If the AI agent has direct access to the values that are

being used to determine the ghost’s next moves, it means that it will be able to generate a

much more accurate simulation and measurement of the danger of adjacent ghosts.

On the other hand, using a simulator in this regard can enable for further analysis of certain

agent states, considering we will be able to get a data set for the game state that is recognised

to be perfect information. Through this we can gain a further understanding as to how the

agent performs when interacting solely with a configurable amount of ghosts within the game

environment (Gallagher and Ryan, 2003).

The usage of a simulator-based test bed additionally causes lack of accuracy from the scoring

output considering that the rules can be modified in accordance to however the authors feel

that it’s best. For instance, the speed at which Ms. Pac-Man travels through the maze when

energised on a power-pill, and for how long the player remains energised for can be modified

freely causing for variations on the game. It was noted by (Samothrakis et al., 2011) that the

speed in which Ms. Pac-Man traverses was altered slightly to match that of the ghosts in the

maze, and no life was given at 10,000 points. In essence, it simply means that it would be

hard to compare the results generated from our own implementation directly with similar

agents due to the variation in environments.

From a performance perspective however, utilising a simulator means that it doesn’t suffer

from the same problems that screen scraping would, in that turnings at intersections within the

maze could never be missed by the functionality of the controller. However, considering that

the agent would be operating on the same thread as the simulator, it would then mean that

instead the MCTS algorithm would block the updating and rendering of the game due to its

CPU expensive nature.

14

2.2 Monte Carlo Tree-Search

“Monte Carlo Tree Search MCTS is a method for finding optimal decisions in a given

domain by taking random samples in the decision space and building a search tree

according to the results.”

(Browne et al., 2012)

Figure 2 - The simulation of the play out and the selection of a child node. (Pepels and Winands, 2012)

Originating from a collection of methods noted as the “Monte-Carlo methods”, of which were

typically used in statistical physics, they have also began to be used within the likes of games

too. Demonstrating world-class levels of play in the likes of Scrabble and Bridge (Browne et

al., 2012), the Monte-Carlo methods rely on repeated random sampling to compute the result

of a given game state. Deriving from this idea, the Monte-Carlo Tree Search (MCTS)

algorithm operates under the idea of two main concepts in that the true value of an action (a

node within the tree) can be approximated by using random simulation recursively. The X

amount of times in which the simulations will recursively cycle can vary on the

implementation. Based on previous publications, it can be concluded that the simulation of

the generated tree will finish based by a computational budget (typically memory or time

constraint) or a maximum iteration constraint (Browne et al., 2012). Considering the large

range in power between modern CPUs, it would be preferable to adjust the simulation time

based on a computational budget. This form of constraint is more flexible, as the controller

will determine how long it has taken to generate the MCTS search tree. From there, the

controller will determine whether the computer is capable of doing more simulations within

the initial provided time constraint (Browne et al., 2012). It is stated by (Samothrakis et al.,

2011) that it takes approximately half a second (500 milliseconds) to perform 400

15

simulations, however (Pepels and Winands, 2012) demonstrate that it’s possible to produce an

even higher amount within less than 100 milliseconds.

The generated tree is then used to estimate future game states at different parts of the nodes,

whilst continuing on the game state from the parent node in the tree (Browne et al., 2012). To

date, this algorithm has set a precedent in enabling computers to compete with players within

games that have high branching decision making factors. Examples of this are demonstrated

by games such as Go and Scrabble, of which have imperfect information, instances where

information is partially visible to the agent that is generated a decision.

Similarly we can see this being applied to Ms. Pac-Man

considering the previously mentioned stochastic behaviour

of the ghosts in the game. The random simulation and

reward evaluation enables for us to better determine what

would be the optimal path to take when the agent arrives at

a junction within the maze. We consider each junction

within the maze to be a branching point for decision

evaluation with the tree of the MCTS algorithm as

demonstrated in Fig. 3. Through this algorithm, the Ms.

Pac-Man agent is able to simulate future game states

without being required to determine the moves of the

ghosts based on its previous actions. Instead, through

random simulation and an appropriate evaluation of a generated tree, we can determine the

safest route based on the current position of the agent. The evaluation however of which

generated branch of the tree to take can vary based on the goal that we are trying to aim for

and furthermore the structure of the tree that we are using.

2.2.1 Multi-armed bandit problem

The MCTS algorithm has been combined with the usage of bandit-based methods to best

evaluate the optimal set of actions to use within a game based on the generated tree.

Considered as the multi-armed bandit problem, the MCTS algorithm is presented as having k

set of arms in possible decisions that can be made by the controller (Browne et al., 2012).

As demonstrated by (Auer et al., 2002), the UCB1 (Upper Confidence Bound) formula can be

applied to a node within a tree to generate a random score that is then recursively back-

propagated from the leaf of the tree (i.e. a node with no children) to its predecessor. This

Figure 3 - Branching decision points

within the maze used for MCTS

evaluation. The blue circle represents

the position of Ms. Pac-Man. (Ikehata

and Ito, 2011)

16

score is then utilised to determine the reward of the branch, which within context to Ms. Pac-

Man would be considered as a path within the maze.

Figure 4 – The UCB1 formula used for evaluating tree nodes as demonstrated by (Auer et al., 2002)

Referring to Fig. 4, T is considered the visit or “sample count” in which determines how many

samples are to be generated before the node is considered as “exhausted”. Once a node is

considered as exhausted, it then means that it is ready to be expanded and then extend the tree

at that given point. The log natural is then applied on the right part of the algorithm to enable

the exploration of less visited nodes within the tree’s structure during the evaluation period of

the tree (Pepels and Winands, 2012).

This formula is used within bandit-based sequential decision-making problems in which the

choice between exploitation moves we know already to be profitable, versus unexplored

moves has to be balanced appropriately when a decision has to be made across k certain

amount of nodes. This is typically called the exploitation and exploration dilemma (Browne et

al., 2012). In context to the method of our implementation, the sample count is used to

determine whether or not we choose to expand the children of the node that we are currently

looking at.

(Samothrakis et al., 2011) mention within with their research that using the UCB-Tuned

formula (Auer et al., 2002) for evaluating nodes displays optimal results with their chosen

structure of the MCTS algorithm. They indicate that by applying the UCB-tuned formula with

a min-max based MCTS tree, a structure that is preferable to games with perfect information,

that it displays results which were preferable in comparison to the previously introduced

UCB1. The results provided in (Samothrakis et al., 2011) demonstrate that when utilising the

UCB-tuned formula, the game score consistently tends to be higher when the depth of the

search tree is higher and the simulation threshold (i.e. amount of times a child node is

simulated) is anywhere between 200 and 350. Whereas in comparison to when the UCB1

node evaluation formula is used, it’s recognised that there is a large inconsistency in

performance when both simulation and tree depth is higher. Consequently it would be

worthwhile running our experiments with either formula to determine if they affect score

17

outputs when combined with the idea of utilising state-based strategies mentioned in section

2.6.

Refer to Fig. 5 to understand the algorithm in question.

Figure 5 – The UCB-tuned algorithm as demonstrated by (Samothrakis et al., 2011)

Within the diagram; n is the sample size of parent node, Xi is the sample score of the child

node of the one that we are looking at within the tree, nj is the sample size (or visit count) of

the parent node the one that we are observing within the tree.

2.2.3 Ms. Pac-Man MCTS implementations

Rather than observing the current game state the agent is operating within (i.e. rule based

look-ahead), MCTS approaches the problem of determining optimal future game states. This

is achieved by simulating them based on a set of probabilities used to approximate ghost

behaviour during the game (Ikehata and Ito, 2011). From this we can then determine the

rewarding output for the newly simulated game state.

This is demonstrated in (Ikehata and Ito, 2011) by simplifying the rules of movement that are

used for the ghosts. A level of probability is used for determining the aggressiveness of each

of the ghosts within the game to determining their actions for each simulation. They note also

that due to the expensive nature of the heuristics, they calculate path simulations at each

intersection or turn within the maze environment. This is done instead of computing at each

grid space on the tunnels between intersections as it would otherwise be too computationally

expensive.

Applying a more static and strategic approach, (Ikehata and Ito, 2011) utilize certain tactics to

determine how their UCT (Upper Confidence Tree) generated from algorithm would be best

suited to avoidance or eating of ghosts (Ikehata and Ito, 2011). There is, however, no mention

of implementing an ambush strategy for the ghosts, a strategy that consists of luring the

ghosts adjacent to the pill so that when the pill is consumed the agent can quickly eat the

enemy ghosts.

18

This is a strategy that is utilized by the likes of ICE Pambush 3 (Thawonmas and Ashida,

2010), a rule-based agent that was compared against Ikehata and Ito’s MCTS-driven

approach (Ikehata and Ito, 2011). Notably, their agent approaches avoidance by being wary of

pincer moves from the enemy ghost. A move in which the Ms. Pac-Man agent is unable to

find a path to escape with as the team of ghosts have surrounded the agent.

The MCTS agent demonstrated by (Ikehata and Ito, 2011) displays a method of restricting

tree growth based on a variable rather than a maximum path, cost which is something that

(Pepels and Winands, 2012) choose to implement in their MCTS-based agent. Restricting the

growth of the tree based on the path cost of each branch could be considered worthwhile

considering moves are only decided at junctions in the maze. Should a ghost decide to change

their direction randomly (of which they are perfectly capable of doing) midway through a Ms.

Pac-Man’s traversal of a long C-Path, then it could invalidate their previous choice to move

down that path. Based on that notion this then could be considered understandable due to how

the agent in (Pepels and Winands, 2012) will not reverse on itself midway of the traversal

through a c-path.

Furthermore, during the evaluation of the nodes

within their agents MCTS search tree, (Ikehata

and Ito, 2011) comment on the idea of using a

danger map to influence the reward values of

tree branches. Referring to Fig. 4, the areas

highlighted in red are considered as more

dangerous due to higher probability in which a

pincer move would occur as there are less

possible routes out of the areas highlighted in

red. This is a valid idea considering that while

the ghosts may adhere to stochastic behaviour,

the possibility for them to form a pincer move is still there. Therefore prioritising other c-

paths within the maze before approaching the ones that are considered more dangerous right

at the beginning would be an applicable move. However, should we desire to use this method

of node evaluation with the likes of an Ambush strategy stated in section 2.6, it would mean

that there’d be a higher chance that we neglect power pills in the maze due to them being

positioned within the 4 corners of the maze.

Figure 6 - Danger map of the first maze within Ms.

Pac-Man (Ikehata and Ito, 2011)

19

While they approach the usage of a heuristics algorithm such as MCTS from a similar angle

that we intend, we still feel they are still are missing a few key areas and applying the

algorithm in circumstances that we don’t believe are necessary. For instance, the same

heuristic algorithm doesn’t appear to be used when they are searching for the remaining pills

within the maze. If this were the case with our implementation, then we would have to

consider extending the expansion threshold so that the tree could reach the next set of pills.

2.2.4 Endgame approaches

The endgame can be defined as the state in the game in which the Ms. Pac-Man agent must

eat the fewest remaining pills within the level. This alternates from the beginning of the game

considering that the agent would have the alternative choice of simply eating all of the power

pills. Upon eating the remaining pills, the maze will change onto the next level (Tong et al.,

2011).

Notably MCTS works very well in evaluating and

determining the most appropriate set of low level

actions to take (i.e. direction in which the agent should

go in) within the area of the tree-search threshold.

However, the search tree begins to fail when the agent

fails to find any pills within the branches of the search

tree due the agent beginning to progress towards the end

of the game and there being a smaller count of pills

remaining. Demonstrated in in Fig. 3, the simulated

game states at each branch return a value of 0 due to

there being no increase in score when the controller was

simulated at such a given point in the tree.

Another tactic or state is required to target pills that might be outside of the area of the agent.

Rather than expanding the branch generation threshold for the heuristic algorithm. (Tong et

al., 2011) approached this through simply generating the shortest linear path to the remaining

pills in the game. Their implementation utilises pre-computed path costs through a simple

path algorithm, a path that does not go back on it itself or visit any path nodes twice. From

this they are able to directly determine the nearest node that contains pills and then determine

if the target location for the agent is safe enough by evaluating the generated path frequently

through Monte-Carlo path testing.

Figure 7 - Ms. Pacman can't find a suitable

path to take as the paths are returning with

a 0 reward due to lack of adjacent pills.

20

This is a valid and less computationally expensive approach than simply expanding the

threshold of tree simulations. The reason for this is that it enables Pac-Man traverse to the

other size of the maze without having to perform expensive heuristics to find few remaining

pills within the remaining environment. This limitation of a pure MCTS approach is again

demonstrated by (Samothrakis et al., 2011), who demonstrate that in able to ensure that a

calculation can be performed within a 50-60ms time frame, a tree depth value must be

enforced. Providing the agent with a linear path to remaining cells in the maze then becomes

an appropriate idea given the limited computation time preventing us from extending the tree

expansion further.

Taking this all into account, we believe that with the implementation of the MCTS algorithm

we would have to take two conditions into account during the runtime of the game. The first

being the amount of pills available within the level (if there are only X amount left, change

state), and the second being the scoring output that is being returned from the search tree.

(Pepels and Winands, 2012) additionally state within their agent implementation that a viable

condition for changing to an End Game tactic would be by responding to a condition

regarding the time that has passed within the game. While we think that this is an interesting

idea, it would be better applied if we timed the period in which Ms. Pac-Man consistently

received a maximum score of 0 from the children of the search tree and then switching to the

End Game state. Moreover, should the agent become astray from the nearest pills in the maze

then a distance condition should be met that enforces the End Game strategy also.

2.2.5 Other approaches

Rather than determining the outcome of future game states, other methods have been

approached by academics such as the idea of using evolution strategies. The premise of an

evolutionary algorithm is that the agent will inductively learn about the surrounding

environment. From this information it will make appropriate decisions based on trial and

error. The information that has been learned about the given game state is then applied

through fixed parameter based strategies (Galván-López et al., 2010) or weighted neural

networks. (Gallagher and Ryan, 2003) demonstrate the idea of implementing a method of

evolutionary learning and base their agents actions similar to that of a human player. Through

this, their research consists of developing a controller that learns inductively to play Ms. Pac-

Man.

While a choice such as this might be preferable for short-term moves within a certain area,

considering the volatility in move choices by the ghosts within the game, it could be

21

considered impractical due to the stochastic nature of the AI. (Gallagher and Ryan, 2003)

comment on the idea of generating a long sequence of moves being a bad idea considering the

volatility of the game state and the general behaviour of the ghosts. Although inadvertent, this

statement could be in contrast to the idea of implementing a more heuristics method of using

Monte-Carlo Tree Search considering the stochastic nature.

(Gallagher and Ledwich, 2007) implement a neural network (ANN) with a form of an

evolution strategy to optimise the way that the agent responds to the maze. The four outputs

of the ANN are the four possible directions that the Ms. Pac-Man agent can move within the

maze, where the inputs to the network is surrounding information to the current position of

Ms. Pac-Man within the game. They simulate a population of agent for several weeks to

acquire behaviour that is considered as competitive against other referenced agents utilising

Pentium 4 CPUs of which they note to be one of the reasons as to why the generation times

are slow.

Tuning parameters such based on evolutionary simulations in the future could be a viable idea

for ensuring that the constraints and conditions that we have in place for changing states are

leaner and responsive to the behaviour of certain the ghosts in the maze. What is meant by

this is simply that although all the ghosts in the game make use of stochastic behaviour at

random intervals, they still utilise their own behavioural patterns. This meaning that the agent

would be more capable of responding to certain ghosts and changing states when appropriate.

(Galván-López et al., 2010) demonstrate a more dynamic approach to the usage of rules by

generating them through grammatical evolution. They relate the work that they conducted to

be similar to that of (Szita and Lõrincz, 2007), in that the strategies that are applied to their

agent are generated through an evolutionary algorithm. Through using a simple and readable

if <condition> then <action> statement, they could generate complex set of rules that the

agent would abide by. They conclude within their results that their evolutionary based method

achieved a higher score in comparison to a hand-coded approach, which within the context of

our research would be a finite state machine.

22

2.3 Decision weighting and Finite State Machines

A Finite State Machine (FSM) is a set of states that determine the behavioural actions of

an AI agent. States may transition between each other if a condition is met, otherwise

the operation of the state will repeat continuously. The FSM dictates agent behaviours

and decisions at a given time-point based on its current state.

(Thompson et al., 2008)

Recent works by (Thompson et al., 2008) demonstrate promising results through the method

of controlling their agent through pure state-based strategies. The research demonstrates that

they apply their agent’s logic through a simulator that only replicates certain features to the

original Ms. Pac-Man software. They combine the Finite-State Machine with underlying

strategies to alter the behaviour of the agent. Through the usage of their finite state machine,

they apply 3 separate strategies for determining the most optimal direction to take once they

arrive at a junction. The first being a total count of all available pills from all possible

directions that can be taken at the junction that Ms. Pac-Man is at and then heading in that

direction.

This approach becomes rather short-sighted however, as its method of avoidance is purely

reactive to the adjacency of ghosts. Notably the greedy look-ahead strategy that is described

by (Thompson et al., 2008) for finding the nearest tunnel where pills are available is

something worth considering when combining with an MCTS implementation.

As stated in 2.3, the MCTS can fall short of functionality should there be no pill within the

reach of search tree. Extending said search tree comes at the cost of the CPU and slow

decision making times meaning that to fill the gap by having a state machine that is

responsive in producing a A* path to the nearest pill node could be a viable option.

Furthermore we can consider that the MCTS algorithm could be used as a means of

determining the safety of the Ms. Pac-Man agent during the traversal to the nearest pill node

(Tong and Sung, 2010). Should the oncoming C-Path be considered dangerous based on the

returned results of the MCTS tree then a re-plan of the path could be done to ensure safety.

Additionally, (Fitzgerald and Congdon, 2009) utilize a rule based approach when targeting

their agent towards a Java version of the Ms. Pac-Man game. Although heavily modified from

Simon Lucas’ original Java-based software, their agent receives an average high score of

10,364 by applying a set of hand-coded rules and parameters. Similar to that of a typical

FSM, they apply conditions from a range of vocabulary that the agent must respond to. These

23

conditions in turn are determined by parameters that are implemented by hand. Although their

agent is purely reactive to the information that is provided to it (i.e. responding to each

captured image separately with no previous history of the maze), they enhance the chosen

rules by applying an evolutionary algorithm.

It was noted that the intention during the development of the agent to implement an

evolutionary component to producing dynamic conditions and properties. It was never

developed before the CIG 2009 competition thus leaving the question open as to whether an

evolutionary algorithm can produce a more comprehensive rule set and ultimately better

performance. We believe that an approach like this could be considered flawed given the non-

deterministic nature of the ghosts. For instance, if the parameters are adjusted in accordance

to the agents interaction with the ghosts (adjacency etc.), and the behaviour rules of each

respective ghost is non-deterministic then then the information that is gained is going to be

consistently thrown off.

(Gallagher and Ryan, 2003) demonstrate a rule-based agent that places emphasis on

generating parameters using evolutionary algorithms that appropriately respond to dangerous

situations within the environment. Their approach begins with using a two-state finite state

machine of which consists of explore and retreat. While the strategy of the agent is very much

static, the parameters that are applied are tuned appropriately based on what is occurring

within the game state.

Another example of a successful rule-based approach to solving the problem was

demonstrated at the 2009 CIG IEEE conference by the Ice Pambush 3 agent (Thawonmas and

Ashida, 2010). Although the screen-capture interface that was used had been optimised, there

were noticeable gains in the way that the agent performed through the logic that was

implemented. It’s worth mentioning that the applied rule set to the agent is not increased at

all, instead the parameters are finely tuned based on the information that is provided from the

state space.

This information then determines the radius in which the Pac-Man agent should be concerned

about such as the proximity of the ghosts. When the agent then meets the condition for

wanting to head for an adjacent pill, the Depth-First Search (DFS) path planning algorithm is

applied to determine the most optimal route to get there.

Applying an evolution strategy, similar to what (Fitzgerald and Congdon, 2009) intended to

implement, (Thawonmas and Ashida, 2010) were able to optimize the distance and cost

24

parameters with their agent. These are values that are used for determining the appropriate

distance between the ghost and the agent as well as how effective certain paths around the

maze are to achieving the highest possible reward. Through their rule-based system however,

they additionally apply a fixed short-term strategy to ensuring that the agent can “ambush” the

ghosts when they are adjacent. When the appropriate rule condition is met, the agent will

remain in relative position so that it does not stray from a certain radius of the power pill.

When the ghost is within distance then the agent will pursue the power pill in question. I

believe that applying a strategy such as this as well as utilising some form of game state

awareness (MCTS in this instance), could ultimately mean that we have an agent that has a

strategy in mind whilst having accurate enough knowledge to avoid ghosts down certain C-

paths within the maze.

(Szita and Lõrincz, 2007) follow a similar pattern in their work. However, rather than modify

the parameter values such as what would be considered dangerous distance to the agent for

example, they generate a list of the rules based on a collection of “action modules” and

observations. The results presented after the experiments of (Szita and Lõrincz, 2007)’s work

demonstrated that the usage of the Cross-Entropy-Method would be beneficial for generating

these policies for targeting multiple goals at the same time. Furthermore, their method is

capable of determining the priorities within decision lists (a collection of rules), therefore

should more than one rule have their condition met at the same time then the one with the

preferable priority would have its action executed. Such an idea of prioritisation could be

considered worthwhile of pursuing for enhancing a static FSM approach. For instance, if Ms.

Pac-Man were within imminent danger of being consumed by a ghost but was nearing a

power pill, the task of acquiring the power pill within the maze would be prioritised. This

would be so that it would prevent the Ms. Pac-Man agent changing direction right before

consumption.

It’s still worth noting however that the previously mentioned approaches are negligent of the

direction that the ghosts are coming from, they instead determine solely the adjacency and use

this value for determining whether the ghosts are a danger. On the contrary, the MCTS

algorithm could be utilised to evaluate the likelihood of survival when simulating the game

state at a junction within the maze. The reason we believe this would be preferable is because

by determining the proximity of the ghost to the agent itself doesn’t provide any additional

information as to which direction the ghost will go in next. We consider this problematic

25

seeing as the ghosts within the environment operate within a stochastic nature (Thompson et

al., 2008).

2.4 Ghost Avoidance and Detection

Within the original version of the Pac-Man game, the behavioural patterns of the ghosts are

already known, as in to say that they are deterministic. In contrast, ghosts within the original

Ms. Pac-Man game operate in a non-deterministic nature (Thompson et al., 2008). However it

is considered that there are some circumstances in which the ghosts will target Ms. Pac-Man

in such a way that it will consequently block every potential path of escape for the agent.

(Thompson et al., 2008) apply a somewhat simple method of avoidance against the ghost by

determining adjacency measured in terms of the Manhattan distance (Krause, 1987). Similar

method is applied but in a more dynamic sense by (Szita and Lõrincz, 2007) where they

generate priority based rule sets using actions such as “NearestEdGhost” or “NearestGhost”

which returns the distance in which the Ms. Pac-Man agent should respond to. These rules in

turn are determined by applying the Cross-Entropy Method.

(Tong and Sung, 2010) approach this problem through utilizing the MCTS algorithm and

applying a shallow search within the immediate state space of the Ms. Pac-Man controller. A

shallow-depth search in this context is when the depth of the MCTS search-tree is shortened

to represent intermediate game states rather than ending ones (i.e. game states that would

occur just after a turn at a junction). The method is applied due to idea that if the Ms. Pac-

Man agent was considered to be in a dangerous state then the ghosts would be nearby and

therefore would be detected by simulations carried out within the branches of the MCTS tree

due to less thorough nature of the generation.

2.4.1 Pincer moves

Considering that the behavioural patterns of the ghosts within the environment are random in

nature, there are some instances where there can be the possibility of one or two ghosts

teaming together to target the Ms. Pacman agent within a corner. This is referred to as a

“pincer” move and in essence means that every path that Ms. Pacman would otherwise have

to escape is then blocked causing for the agent to be forced to lose (Pepels and Winands,

2012).

As such, it would mean that during runtime of the games simulation, we would have to take

into consideration the positioning of the ghost AI so that we can tell early on if there was

some kind of ambush being formed. (Pepels and Winands, 2012) discuss within their

26

implementation of MCTS for both ghost and Ms. Pacman agents, that by applying a LGR

policy (Last-Good-Reply) (Baier and Drake, Dec.), it is possible to tell early on when a pincer

move is occurring for the Ms. Pacman agent.

(Baier and Drake, Dec.) describes the MCTS algorithm as an inductive machine learning

method in that in that results of the previous play out, in which this context could be

considered a junction within the Ms. Pac-Man maze, affect the moves of the future game

states. While this might not be considered entirely true within the context of Ms. Pac-Man

considering ghosts behave partially within a stochastic nature, there is some relevance.

Through this, (Baier and Drake, Dec.) state that each “reply” (i.e. a good move made in the

game), are stored within the predecessor during the back-propagation process of the MCTS

generation when playing a game of Go. (Pepels and Winands, 2012) conclude within the

results of their research that applying such a method doesn’t provide any significant

performance enhancement when it comes to effectively avoiding a team of ghosts. This would

conclude that ultimately using something such as Last-Good-Reply alone would be futile in

determining a pincer move and would only add more computation time onto an already

expensive algorithm. Rather than recording moves, (Tong and Sung, 2010) use an influence

map to avoid parts of the maze that would otherwise be considered dangerous due to the high

possibility of a pincer move forming. As mentioned in 2.4.3, the influence map places

weighting against the scoring of the search tree branches of MCTS based on the parts of the

maze that the tree expands to. This makes it less likely that the agent will head towards the

direction of a corner of the maze unless it has to due to the applied penalty of going within

that area.

Through the provided literature we have demonstrated that there has been positive progress

made through the research of using either of our proposed AI methods. Moreover, we have

also seen varying methods of application which has aided us to refine our approach to

implementing our agent. While we recognize the MCTS algorithm to be CPU intensive, we

see also that there are varying useable techniques that enable us to reduce the effects of this.

We see also that through previous competition entries that there are various fixed hand-coded

strategies that have been consistently proven to be successful such as the Ice Pambush 3 agent

(Thawonmas and Ashida, 2010). Through our agent design we will demonstrate the varying

approaches that were taken to enable both the MCTS algorithm and the finite state layout to

be competitive.

27

3. Implementation

Referring back to the Computer Intelligence and Games conference mentioned in section 2 of

our literature review, there are two ways that are regarded as the main methods of

implementing an AI agent into the likes of Ms. Pacman gameplay. The first method is through

the usage of simulator and the second through a screen-scraping interface observing the

original game software.

It was taken into consideration that the method of obtaining graphics buffer information from

the original software would apply additional latency to our agent’s computation. The reason

for this is because of the time required to analyse the image of the game and extract the

conditional information that we would require from it (locations of Pacman, pills, ghosts etc.).

Furthermore it was considered that we would have spent more time optimising the efficiency

of object recognition and ensuring that the game state was accurately represented when

information was missing from the captured images. We believe instead that our efforts would

be best placed in ensuring that the agent’s behaviour is optimal and in accordance to our agent

design specification as stated in section 4.

Our simulator at each tick will request for our agent to return a move that it wants to go in and

will provide our agent with the current GameState.

Refer to the abstract method definition below.

 /// <summary>

 /// Called at every tick

 /// </summary>

 /// <param name="gs">A copy of the game state instance</param>

 /// <returns>Returns the direction that we want to go in</returns>

 public override Direction Think(GameState gs)

Figure 8 - The abstract method stub that is provided to us through the simulators API.

The direction value that is returned is an enumerator that consists of the following values.

public enum Direction { Up = 0, Down = 1, Left = 2, Right = 3, None = 4,

Stall = 5 };

Figure 9 - The direction that has to be returned to the simulator at each tick.

• Stall – Informs the simulator to keep the agent stationary.

28

• None – Informs the simulator to keep moving in the same direction that Ms. Pac-Man

was moving in previously.

The other values in the enumerator type are considered to be self-explanatory.

4. Agent Design

By applying a finite state machine structure to the implementation of our agent, it provides us

with a strategic approach that can provide context for a heuristic best-first search algorithm

such as MCTS. Given the context in which the algorithm is used can be defined by the finite

state that the agent is in during the time of usage. For example, the algorithm could be used

for ghost avoidance or for simply navigating the maze based on the highest reward output of

each branch within the tree.

Furthermore, we intend for the MCTS simulations to be used solely within the Wander state

as it will be able to determine the best c-paths to traverse through the reward output of the

simulations. The Wander state will change states should any of the pre-defined parameters

have their condition met. In this instance, should the agent be within a certain distance of a

ghost (based on the parameters we provide), then the state will change. We measure the

distance between each entity within the game based on a metric called the Manhattan

distance.

The “Manhattan distance” is a form of measurement that derives from the idea of taxi-cabs

that move from one end of Manhattan Island to the other through the city blocks. Which route

that is considered the shortest can vary or be considered equal but at the same time appear as

completely different (Krause, 1987). We can apply this method of measuring distance in the

context of the game of Ms. Pac-Man due to junctions and turns within the maze.

Due to the nature of the simulator’s current version, it’s worthwhile noting that rather than

producing decisions at each intersection, Ms. Pac-Man will have to determine a low-level

decision (i.e. a direction) at every tick of the simulators runtime. The available outputs of our

agent controller is the four possible directions (up, down, left, right) along with none (carry on

moving with the previously selected direction), or stall. Stalling informs the simulator to

repeatedly inverse the direction of the agent so that Ms. Pac-Man remains in relatively the

same position. This is particular output is used with the likes of our Ambush strategy. Refer to

Fig. 7 for the values that the agent must return at each tick.

29

4.1 Tree Search Implementation (MCTS)

4.1.1 Structure

We intend for the structure of our MCTS implementation to be similar to that of a Min-Max

tree. As stated by (Browne et al., 2012), a min-max tree is typically used within an a perfect

environment (i.e. an environment that is completely observable). Given the context of the

game of Ms. Pac-Man, the entire state space is viewable by the player, so in this regards we

would consider it to be the same for the AI agent as well.

4.1.2 Usage

We aim to make use of the MCTS algorithm at each junction that the agent arrives at in the

maze. A junction is defined as a point within the maze in which the agent has 3 or more

possible directions that it is able to move in. It is only at these points in which the agent will

evaluate all the possible directions and determine which direction to go on the next tick. This

consequently means that during L-shaped paths (junctions with only 2 possible moves) within

the maze the agent is still going to have to move constantly. A problem arises from this due to

the fact that the agent will not be called upon to choose a direction when heading through this

type of tunnel. This is fixed simply by applying the function displayed within Fig. 10.

30

 // Attempt to go within the provided direction. If it's not
possible, then
 // return the next nearest direction.
 private Direction TryGoDirection(GameState gs, Direction
pDirection)
 {
 var _directions = gs.Pacman.PossibleDirections();

 // Determine whether or not we are able to go in that direction
 if (_directions.Contains(pDirection))
 {
 return pDirection;
 }
 else
 {
 // Just return the first that is not the inverse of the
direction
 // that we are aiming to go in
 foreach (var dir in _directions)
 {
 if (GameState.InverseDirection(dir) != pDirection)
 {
 return dir;
 }
 }
 }

 return Direction.None;
 }

Figure 10 - Simple function for returning the next possible move when traversing irregular C-Paths

It is noted that during the preliminary part of our tests, we aim to make use of the algorithm

only within the Wander state of the agent so that the decisions made within that state are

determined by the amount of pills that are consumed more than anything.

4.1.3 Direction Selection

Stated previously, the agent’s navigation around the maze will mostly be influenced by the

MCTS search algorithm and the UCB scores that are generated by it. This is because I believe

that through the simulation stages of the generation of the tree, it will determine the best

possible score through certain c-paths whilst taking into consideration the ghost through

adjacent routes.

Through the research stages, we alternated between several different methods of tree node

selection as stated by (Browne et al., 2012), once the appropriate scores are generated by the

UCB evaluation.

• Max child: Select the most visited root child (higher sample size)

31

• Max-robust child: Select the root child with both the highest visit count and the

highest reward. If none exist, then continue searching until an acceptable visit count is

achieved.

• Secure child: Select the child of which maximises the lower confidence bound.

For the evaluation of the tree nodes within the search tree, we aim to use the formulas stated

within section 2.1 of our literature review which are UCB1 and UCB-Tuned.

4.2 Considerations

Having reviewed the literature in section 2.1, we are lead to believe that there are a few things

that we should be concerned in regards to our how we approach implementing our agent.

4.2.1 Simulation Cycles

When a node within a generated tree is evaluated for its reward, the game state at the time of

evaluation is simulated by how many is defined as a parameter. The agent during this period

will not behave by the same rules and conditions as our actual implementation, rather it will

move randomly for the given amount of cycles based on

Based on the ideas mentioned within the agent implementation of (Thompson et al., 2008), I

concluded that it would be appropriate to base the agent that we would use for our simulations

two separate strategies.

• Greedy-Random

o Upon arrive at a junction, the Ms. Pac-Man agent will determine which

direction contains the most pills and chose it as the next choice within the tick.

• Random-No-Inverse

o A random move is selected, but it cannot be the inverse of the current direction

that Pac-Man is going in.

32

 public override Direction Think(GameState gs)

 {

 List<Direction> possible = gs.Pacman.PossibleDirections();

 if (possible.Count > 0)

 {

 int select = GameState.Random.Next(0, possible.Count);

 if (possible[select] !=

gs.Pacman.InverseDirection(gs.Pacman.Direction))

 return possible[select];

 }

 return Direction.None;

 }

Figure 11 – Random-No-Inverse: The logic used for the simulation cycles in the tree

4.2.2 Tree Depth

There are two main ways of measuring the depth of the tree.

4.2.2.1 Layer Depth

The layer depth within the search tree is considered as the recursive level that the tree can

expand to. For instance, when the root expands in 4 possible directions that is considered as

one layer, and should one of the children from that expansion gets chosen to expand again,

that would be constitute as a layer as well.

4.2.2.2 Child Depth

The child depth is considered to be the total amount of children that can be generated within

the tree. This accounts for every branch within the tree that is not considered a leaf (i.e. no

children from a given node).

33

4.3 Finite States

With my implementation of the state machine, upon transitioning between states, one set of

actions will be called once before entering a loop in regards to the state. Following a similar

FSM structure demonstrated by (Thompson et al., 2008), I aim to implement specific

strategies that are responsive to certain scenarios. For example when a power pill is consumed

by our agent or when ghosts are within close proximity of our agent. Furthermore, I almost

hope to put in place a method of ambushing the enemy ghosts within the environment.

Due to the promising results that were demonstrated within their result we concluded that it

would be appropriate to follow a similar structure with a few additional enhancements. Refer

to Figure 12 to observe a visual representation of the states that are to be used in our agent.

4.3.1 (Default) Wander

Being the first state that is executed during when the controller is launched for the first time,

Ms. Pacman will apply the MCTS algorithm to generate the tree at each junction of the maze.

As mentioned previously, based on the selection parameter that is chosen through testing

(Max Child etc.) will determine how the next direction at the maze junction is selected.

For each set of tests, we will be replicating the same conditions but changing the parameters

to see what the outcome is of these tests. Stated in section 2.3.4, we concluded that it would

be appropriate for our AI to respond to three conditions that would determine whether or not

the agent would change its currently active state to that of another.

4.3.1.1 Conditions

• Endgame

o If the remaining pill threshold within the maze has been met.

o If the highest scoring child within the tree is 0. This means that there are no

adjacent pills nearby that would otherwise raise the score of the child node to

something above 0.

• Flee

o If the nearest ghost is 2 Manhattan distance (Krause, 1987) value away from

the agent, change to the fleeing state.

• Ambush

o If a power pill is considered close enough to the Pac-man agent based on a

fixed constant, then change to the Ambush state.

34

4.3.2 Flee

If the Ms. Pac-Man agent is within a close proximity of a ghost and the MCTS hasn’t

provided a better alternative route during the Wandering state, then this state is considered as

a failsafe. The agent will recognise the direction that the ghost is coming towards the agent

and will attempt to go the opposite direction if possible. It is considered dangerous when the

nearest ghost is within configurable nodes distance (FLEE_THRESHOLD) of the agent.

This state is implemented due to the way that that the MCTS algorithm is applied within our

agent. Our agent will not change direction midway through traversal of a C-Path in the maze

which leaves the agent vulnerable to g hosts that would perhaps otherwise make moves that

are different to those that were simulated. This is entirely possible based on the stochastic

nature of the ghosts mentioned in section 2.1. The Flee state then becomes an intermediary

that guides the agent away from the dangerous scenario before returning to Wandering again.

During this state, upon arriving at a junction within the maze, it will evaluate all possible

directions and determine whether there is a ghost in that direction. Should there be a ghost in

all provided directions, then the agent will determine the furthest ghost and then head in that

direction in off-chance that there will be another junction.

Should the distance of the nearest ghost to Ms. Pac-Man be farther than that of the parameter

FLEE_CHANGE_THRESHOLD, then the agent will change state back to Wander.

4.3.2.1 Conditions

• Wander

o The agent will return back to the wandering state when it is considered safe

again. It is considered safe when the agent is at least 2 nodes distance values

away from the nearest ghost.

4.3.3 Ambush

The functionality of this state is considered to be rather simple and is only transitioned to

during Wander should the condition be met that there is a power pill within a certain fixed

radius.

Within this state, the agent will repeatedly change directions back and forth between its

current direction and the one opposite to that to ensure that it remains in relatively the same

position. Due to the way in which the game works, Ms. Pac-Man has to be moving at all times

35

unless the agent is in a corner which means that the controller has to interact with the game in

such a way to ensure that the agent doesn’t progress any further around the maze.

This will continue until the condition is met determining that the enemy ghosts within the

maze are within a pre-defined constant radius of the agent

(AMBUSH_DISTANCE_THRESHOLD). Should the ghost be within the radius that is

defined in the controller, then the agent will go for the power pill and then transition to the

Hunt state. We’ve applied this method based on the success that (Thawonmas and Ashida,

2010) had with their implementation of the Ice Pambush 3 agent.

4.3.3.1 Conditions

• Hunt

o Once the agent has consumed the power pill, change to Hunt so that the mortal

ghosts can be pursued when the agent is immortal.

4.3.4 Hunt

Upon consuming the power pill, the agent will immediately target adjacent ghosts. Upon

selecting the nearest ghost based on the Manhattan distance, a Dijkstra-based path will be

generated and a sequence of low-level moves (directions) will be provided to the agent to

follow. However, should the agent fail to find adjacent ghost that are within approachable

distance during the energise time (4 seconds – although changeable) then the agent will return

to the “Wander” state.

The value that will determine the adjacency of the ghosts will be determined through the

experimentation phases of the agent.

4.3.4.1 Conditions

• Wander

o If the ghost that the agent is targeting comes out of being mortal (i.e. inedible),

then the agent will return back to the Wander state.

4.3.5 End Game

This state is activated when there are no immediately adjacent nodes to the Ms. Pac-Man

agent within the maze or the MCTS search tree is returning a best score of 0. The purpose of

this state is to generate the shortest available path to the nearest node that contains a pill. Once

we are near enough, we return back to the Wander state where the MCTS algorithm will be

close enough to the remaining pills to determine the best scoring route for the agent. This is

36

similar to the strategy that was applied as a part of the work carried out by (Thompson et al.,

2008) in which they state it as being Greedy-Lookahead.

4.3.5.1 Conditions

• Wander

o If we’re considered to be near enough a pill, it would be safe to assume that the

MCTS search depth is within range of the remaining pills within the

environment.

• Flee

o The agent will resort to fleeing if at any point it considers itself to be in danger

with any of the ghosts in the maze.

Figure 12 - Diagram displaying the finite state machine layout of our agent.

4.4 Development

For the implementation of our AI agent, I decided to utilize the IEEE CIG suggested C# based

simulator developed by (Flensbank and Yannakakis, 2008). My reason for choosing this is to

37

do with our familiarity and understanding of the programming language and knowing how to

exploit it to implement the AI controller better. Utilising Visual Studio 2008, the solution

consists of the simulator, the screen capture adapter (that utilises the original Microsoft Ms.

Pacman “Revenge of the Arcade” Software) and the library project that is loaded into it that

will contain the implementation of my Ms. Pac-man agent. This separate DLL (dynamic link

library) containing the implementations code is then loaded into the simulator during runtime

using the .NET System.Reflection namespace. It is noted that the simulators choice of

rendering the game state to the player through the means of WinForms and GDI+ is not

entirely ideal based on the fact that it utilizes the CPU for the majority of its rendering

processing (Microsoft, 2012). However, we believe it should remain sufficient enough in our

endeavours for the agent that we intend to develop.

4.5 Modifications

Our agent required several pre-requisites to be met before being developed, some of which

were not available with the original version of the simulator. Extensive modifications had to

be carried out on the engine and structure of the software before-hand so that we could

proceed.

4.5.1 External File Management

Minor modifications have already been made to the simulator environment, including

problems that were found in which the assembly (.dll) containing the data regarding our agent

implementation was unable to load. As it turned out, this was partly to do with the way that

the simulator environment was managing external files to operate with which in turn caused it

to crash frequently.

4.5.2 Cloning Game States

The fundamental part of the Monte-Carlo Tree Search algorithm is for its ability to simulate

potential game states in a discretized state space. In order to achieve this, it would mean to

replicate the information that is used for processing the gameplay at runtime. The original

source code that was provided for the simulator appeared to have the appropriate method stub

in place for cloning but unfortunately there was no functional code that would enable us to do

such a thing.

We discovered that through utilising C# there were various methods of cloning object data at

runtime through the means of manually generating new objects and copying information

38

between the current game state and the replica or simply parsing the object through

Reflection.

Although using the means of Reflection saved us a substantial amount of development time,

there was still a significant delay when the cloning process began during runtime of

approximately 5 seconds or more. Considering that the game state has to be cloned numerous

times during the recursive tree generation process, this was simply unfeasible. As such, we

discovered that although it would be somewhat error-prone, it was better to implement our

own manual method of cloning. We carried this out by modifying the main objects within the

simulator by making sure that the implemented the IClonable interface. This interface was put

into place with all relevant entities in the game state included Ms. Pac-Man, the four ghosts,

map information and the game state itself.

Through this method, there was a decrease in the time that it took to clone certain games

when using certain parameters for the MCTS generation. Upon removing irrelevant map data

from the cloning process, such as levels that were not immediately relevant to the simulation

procedure, we were furthermore able to decrease the time required to clone.

Furthermore we encountered an issue in the way that the information regarding each node

within the game state was being copied. This is to do with how the Node class is laid out

within our simulator. Within each Node object, there is a refer to the node that is

4.5.3 Capturing screen buffer and saving to images

As an invaluable tool for debugging and determining

the effectiveness of the recursive tree algorithm, I

implemented a function within the simulator that

enabled me to automatically take screen shots every

time the controller arrived at a junction and generated

a new search tree.

From this, we can ensure appropriate scores are being

generated during the runtime of the simulations within

the environment. An example of this would be when

Pacman arrives at a junction and a ghost would be to

the immediate right. I would expect the branch to the

right of the generated tree to have a severely penalised

Figure 13 - An example image that is captured

from the simulator upon arriving at a

junction.

39

score after evaluation because taking that route would be suicide for the agent (e.g. a value

that is a lot lower than 0).

Due to the structure of the simulator, it also meant that we could generate a visual

representation of game states that we were not necessarily able to see such as the ones that

were simulated by the Monte-Carlo Tree Search algorithm. This meant that we could

accurately determine that conditions were being met when the tree generation process was

occurring.

Lastly, it also meant that we could identify the ways in which our agent would lose the game.

For instance, as stated within section 2.4.1, pincer moves are entirely possible within the

game. Therefore as a means of counter-acting this kind of behaviour from the ghosts, we must

identify first in what state the game was in when the agent lost.

4.5.4 Logging information

For better debugging capabilities, we integrated a logging system that would append new

messages onto a text file that correlated to the session that we were debugging within. Saved

with a date timestamp, it afforded us flexibility in finding out values of game states that we

couldn’t necessarily see. For instance, with the generation of the MCTS tree, there are several

simulations of a game state going on that are now visible to us as the user. The logging

functionality enabled us to output the information that was appearing.

To enable for our logging output to be efficiently recorded without much effort on our part to

store and reuse, we made use of the Newtonsoft JSON libraries developed by (James, n.d.) for

serializing our TestStats object that stores all the information regarding the test. By serializing

it within this format, it means that afterwards we are able to read the text file into an external

tool and deserialized it back into an object within code at runtime. This saves us time having

to prepare a proprietary file format that would be used by the simulator. Instead, we can store

the information in a widely recognized format and do so without costing us much

development time.

40

Refer to the code below to overview the TestStats class.

 public class TestStats : JsonSerializer

 {

 public int MinLevelsCleared = 0;

 public int MaxLevelsCleared = 0;

 public int AverageLevelsCleared = 0;

 public int TotalLevelsCleared = 0;

 public string SessionID = "";

 public long ElapsedMillisecondsTotal = 0;

 public int TotalGames = 0;

 // The amount that each of the ghost kills the Pac-Man agent.

 public int RedKills = 0;

 public int PinkKills = 0;

 public int BlueKills = 0;

 public int BrownKills = 0;

 public int TotalPillsTaken = 0;

 public int MaxPillsTaken = 0;

 public int MinPillsTaken = int.MaxValue;

 public int AveragePillsTaken = 0;

 public int TotalGhostsEaten = 0;

 public int MaxGhostsEaten = 0;

 public int MinGhostsEaten = int.MaxValue;

 public int AverageGhostsEaten = 0;

 // Used for recording how long each game round takes.

 public float LongestRoundTime = 0;

 public float ShortestRoundTime = float.MaxValue;

 public float AverageRoundTime = 0;

 public float TotalRoundTime = 0;

 public float MinLifeTime = float.MaxValue;

 public float MaxLifeTime = 0;

 public float AverageLifeTime = 0;

 public float TotalLifeTime = 0;

 public int TotalLives = 0;

 public int MCTSTotalGenerations = 0;

 public int MCTSMaximum = 0;

 public int MCTSMinimum = int.MaxValue;

 public int MCTSAverage = 0;

 public int MCTSTotalTime = 0;

 public int TotalScore = 0;

 public int AverageScore = 0;

 public int MinScore = int.MaxValue;

 public int MaxScore = 0;

 public void Reset()

 {

 }

 }

Figure 14 - The TestStats object that is serialized when the testing is complete.

4.5.5 Simulator

Other discrete modifications were also made to the way that the simulator launched such as

argument handling so that we had greater flexibility in the way that we were able to simulate

41

games with our controller without having to modify code directly within our instance of

Visual Studio 2008.

List of available arguments

• -c

o How many games do we wish to simulate.

• -g

o Ghosts that we want available in the simulation. Referring back to the testing

methods that (Gallagher and Ryan, 2003) demonstrate, I considered that it

might be preferable to implement something like this for debugging and

performance analysis purposes.

• -q

o Prevent the agent from generating any log output to the console screen.

• -a

o Name of the agent that we want loaded from the aforementioned dynamic

linked library.

42

5. Research & Analysis

5.1 Setup

Figure 15 - The appearance of the simulator during runtime. The debug console (left) and the visual interface of the

game state (right).

The simulator that we chose to develop our agent with contained functionality that enables us

to run game simulations without any form of visual interface (refer to Fig. 15). Additionally,

through this method it will produce the results without us having to wait in real time for the

agent play outs to finish.

We concluded that for the setup of our testing that it would be appropriate to simulate at least

100 games with various tweaks made to the Pacman Controller. The MCTS implementation

utilises several different constant parameters that are used to tweak the depth and simulation

count.

5.1.1 Monte-Carlo Tree Search Parameters

• Max Simulations – MAX_SIMULATIONS

How many simulations do we perform on the tree before stopping and extracting the

next direction that the AI has to go in? This value could be either based on how much

time is provided to the simulation stage, or a fixed constraint. Refer to section 2.1 for

further understanding.

43

• Shallow Simulations – SHALLOW_SIMULATIONS

Similar to that of Max Simulations, however this value is applied for then traversing

C-paths and the agent is not at junction. Shallow simulations consist of simulating

games states with a much stricter constraint considering that we are only after the

immediate values.

• Max Cycles – MAX_CYCLES

How many random simulations should we perform on a node? During a simulation,

another Ms. Pac-Man controller is used to play out these simulations. It is a very

simplified agent and only carries out random moves each time it is called.

• Expansion Threshold – EXPANSION_THRESHOLD

How many times does a child node within the tree have to be visited before we

consider it exhausted and ready for expansion?

• Evaluation Method

As mentioned with section 2.1, we displayed that (Pepels and Winands, 2012) utilized

two separate evaluation methods for when expanding nodes within the search tree of

which were UCB1 and UCB-tuned. They state within their research output that they

had more consistent and better results when there was a higher simulation and

expansion count.

• Layer Threshold – LAYER_THRESHOLD

This value is considered to be the absolute depth that the tree can expand the children

to regardless of how many samples have been done on the node that is returned as the

Upper Confidence Tree.

5.1.2 Finite State Machine Parameters

• Ambush Distance – AMBUSH_DISTANCE_THRESHOLD

This is considered as the distance in which the agent must be from the power pill

before entering the Ambush state.

• Flee Change Threshold – FLEE_CHANGE_THRESHOLD

44

The value defined will be the distance in which the agent has to be away from the

nearest ghost in order to transition back to the wandering state.

• Flee Distance – FLEE_DISTANCE

The ghosts within the maze must be within a certain distance of the agent before the

“Flee Distance” condition is met.

• End Game Distance – END_GAME_DISTANCE

How far away must the agent be from the nearest pill before the End Game state is

activated?

Furthermore I aim to determine how the results will vary when I enable for child nodes of a

branch to return back in the same direction that their parent came from. For example, child A

from the root node may extend towards the left. Should Child A expand and generate children,

one of those children may expand back in the direction that Child A came from technically

causing for an overlap in paths. (Pepels and Winands, 2012) remove the possibility of this

happening (noted as reverse moves) when they conduct their tests on their MCTS enhanced

agent, however I feel that by enabling it, it could enable for more thorough results.

In regards to the back propagation process itself, we intend on looking at the performance

difference between using evaluation formulas UCB1 and UCB-tuned, both presented by

(Auer et al., 2002) as a means of determining the most optimal reward from a search tree.

Referring back to section 2, (Samothrakis et al., 2011) displayed within their MCTS research

that with fewer simulations and a higher search-tree depth they were consistently able to

achieve a range of scores that were much higher. Whereas when the UCB1 formula was used

for tree evaluation, there was no real correlation between the tree-depth and the amount of

simulations performed.

For each agent that we have prepared, we will utilize varying configurations during testing to

determine what the difference in agent performance is like. Each configuration will make use

of a different set of values for each of the available parameters of the respective agent. These

are stated in section 5.1.1 and section 5.1.2.

5.1.3 Testing Machine

Based on the research that was conducted by (Gallagher and Ledwich, 2007), we believed that

it would be important to note the hardware that we would be carrying out these test on. The

45

reason for this is that the speed at which the MCTS simulations are completed would vary

dependant on the machine that it’s run on, therefore it’s important to note that the results

generated from our tests are in context of the hardware we have. These are the specifications

of the computer that the tests will be completed and evaluated on.

• I7 950 @ 3.6 GHZ

• 12 GB DDR3 RAM

• Nvidia GTX 580 video card.

It is noted that the strength of the video card will not have any real effect in the calculations of

the MCTS simulation at runtime.

5.1.4 Controller

The following is a summarisation of the controllers and the metrics that we aim to measure

that we are going to be testing for our research.

5.1.4.1 Metrics

For each configuration during testing, we will be looking for a collection of values from our

simulator test bed that will be used to determine the performance of our agent. Additionally,

we will be recording screenshots of the game state of which will be stored in the

corresponding configuration directory stated section 5.2.1. Through the observation of the

screenshot, we will be able to recognize any trends that may have occurred in the behaviour of

the agent such as pincer moves which was stated in section 2.1 of our literature review.

Scoring

Referring back the section 2.2.1 of the literature review, using the score of the game within

our simulator test-bed would not achieve would not provide any reliable information on their

own. Therefore for the purpose of our research, we will be using the score solely for

comparing the varying performance between the varying setups that we have in place to

display the effectiveness of combining the strategy of an FSM and the heuristics of the MCTS

algorithm.

MCTS Generation times

To understand whether or not our MCTS implementation has been effective enough in terms

of generation times we will be additionally monitoring how long it takes to generates varying

lengths of a tree when the parameters are adjusted accordingly. Please refer to our testing

setup to learn more.

46

Ghosts Eaten

Recording how many ghosts were eaten during the game simulations will helps us determine

how successful our agent is when being placed in the offensive. For instance, with the usage

of our Ambush strategy within the Ms. Pac-Man, we will be determining how successful it is

in consuming the enemy ghosts when placed next to the power pill until the ghosts come

close.

Pills Taken

Due to the way that the MCTS algorithm works, we aim to find out how successful it is in

consuming a large quantity of pills whilst surviving for a long period of time.

Ghost Kills

Before the end of every game, we aim to record how many times our agent was killed by each

respective ghost. By using this metric we can then determine how each configuration interacts

with the ghosts and how likely they are to be eaten by the ghost.

Life Time / Round Time

As a way of determining how our experiment configurations are at surviving for long periods

of time against the enemy ghosts, we will record the life time within the game as well as how

long in total they survive within each round.

5.1.4.2 Pure MCTS behaviour

To compare our implementation of the Monte-Carlo Tree Search algorithm, we decided that it

would be appropriate to determine how well our evaluation formulas performed in contrast to

the other published research such as (Robles and Lucas, 2009). In which the behaviour of the

agent was completely based on the scores that were generated from the heuristics of the

simple tree search. Therefore with this test we will remove all fixed strategies from the agent

and see how it fares when it simply has the results of the MCTS algorithm to base its moves

from. From this, we will be able to determine how effective the algorithm on its own would

be without any form of hand-coded strategies to dictate the navigation of the agent around the

maze.

5.1.4.3 FSM with scripted behaviour

The same finite state machine structure as our main implementation, this will utilize a set of

hand-coded scripted conditions within the wander state rather than basing its method on based

its preferred direction based on the UCB scoring that is generated from the tree node.

47

The behaviour in particular of this agent will emulate some of the details mentioned by

(Thompson et al., 2008) in that at each junction the agent will evaluate every possible

direction that it can take and determine which one offers it the largest amount of pills for

consumption. The reason for our choice in using this methodology in our testing is due to the

success that was demonstrated in their experiments. Therefore, comparing this behaviour in

contrast to a heuristic based method would help determine if there was an improvement in

performance.

Just like the End Game state that we aim to implement within our main agent, should the

agent fail to find any adjacent pills then it will generate the shortest path to the nearest one in

the maze and resume to the Wander state.

Ambush

The functionality of this state will be identical to that of our main implementation. While in

the wandering state, the Ms. Pac-Man agent will detect whether it is adjacent to a power pill.

When a condition is met that it is in fact close enough, the controller will remain idle within

the same position until a ghost becomes closer. When the ghost is considered close enough,

the controller will head towards the power-pill and then transition to the “Hunt” state.

Flee

During the fleeing state, the actions of the agent will be similar to that of the original

implementation specification in section 4.1.1. The agent will continue to move in the inverse

direction of the agent, should it determine that the nearest ghost is within a distance of 2

Manhattan values (i.e. nodes).

Wander

While Ms. Pac-Man is within this state, the aim will predominantly to consume the pills that

are adjacent to the immediate position of the Pacman agent itself. When there are no pills that

are within close proximity to the agent, it will then proceed to find the shortest path towards

one. The key difference between this and our main implementation is that there will be no

heuristic information detailing whether certain tunnels are considered safe or not. Therefore it

will simply follow which ever maze that has adjacent pills at.

End Game

As previously mentioned, the End Game state is activated when there is a limited of pills

remaining within the maze. For this variation of the agent, I will utilize a threshold of 25

48

remaining pills within the maze. When the game starts there are initially 285 pills that are

available within the maze.

5.1.5 Ghost Behaviour

Throughout the testing stage, all four ghosts will be present within the maze. In our simulator,

each ghost has a separate set of rules in how they behave. For additional testing in some cases

I will utilize several instances of the same ghost to determine how agile the agent when

presented with enemy characters that portray behaviour that is the same or at the very least

similar.

Red

• A random distance threshold is generated when the ghost is created for the first time.

• Should the Ms. Pacman agent be within a fixed radius of Red, then run the following

conditions.

o The Red ghost at any given point cannot stall or forever continue in the same

direction.

o On each tick, check the distance between the current node that the ghost is

occupying and the node that the Pacman controller is occupying.

o If the Pacman agent is within distance, then do the following move within the

direction that Pacman is in.

� For example, if Pacman meets the condition of being to the right, then

change the preferred direction for the next update tick to the right.

Pink

• If the pink ghost is within a certain distance of the Pacman entity within the Game

State and the random number that is generated returns as 0, then move randomly

around the maze.

o Moving randomly entails that the ghost will select a random direction to move

in so long as it’s not the inverse of the previous direction that they moved in

(i.e. last direction was right, so next can’t be left).

• If Pacman is within a certain pixel distance of 120 and the current direction value of

the Pink ghost is not set to “none”, then move in a similar pattern to the Red ghost.

• Else if the Pacman agent is not within a certain distance then, the pink ghost will then

determine whether the Pacman agent is above, below, left or to the right of the ghost.

49

• Based on the aforementioned conditions, the Pink ghost will attempt to go in the

direction presuming that it is not the inverse of the direction that it is currently going

in when the change of direction is attempted.

Blue

• If the Ms. Pacman agent is not within a fixed distance threshold, then select a random

direction to move in other than the inverse of the current direction that the ghost is

going in.

• If the Blue ghost is within a certain distance of the Red ghost, then start using the

same move set as the Red ghost to generate a mob like movement pattern.

• Else if the Blue ghost is within a certain distance of the Pacman agent, proceed to

move in the direction that the agent is in regards to the Blue ghost.

Brown

• Moves randomly around the maze, however the next direction of movement cannot be

the inverse of the previous current direction that the ghost is moving in. No further

conditions or actions are applied.

5.2 Data Collected and results

After simulating a total of 100 games for each setup within our simulator environment we

concluded with the following results.

We’ve provided each test case with a unique identifier that is generated from an MD5 hash of

the current time stamp (provided by the DateTime object) up to the second. This unique

identifier enables us to collate the testing information that is relevant to each agent that we are

working with. For instance, should we wish to capture any images or serialize and save JSON

text, the files will be appropriately placed in the folders named after the session ID.

5.2.1 Folder Structure

{SessionID}/

• Logs/

o EndOfTest_{datetimestamp}.txt – The final stats that are recorded before.

o Output_{datetimestamp}.txt – The total collection of log entries that were

stored.

• Images/

50

o Endofround_{datetimestamp}.bmp – Image that is scraped of the game state

before the game is considered over.

o Eatenpowerpill_{datetimestamp}.bmp – Image that is scraped of the game

once the agent has consumed a power pill.

o Eatenbyghost_{datetimestamp}.bmp – Image that is scraped of the game

before the agent is eaten by the enemy ghost.

51

5.2.2 Main Implementation

5.2.2.1 Configuration 1

Test Session ID: session_C37E7E8698A4DEFCFB7ABE00AA858C0F

1. MCTS Parameters

Parameter Name Parameter Value

Max Cycles 5

Expansion Threshold 3

Layer Threshold 7

Evaluation Method UCB1

Max Simulations 5 (Fixed Constraint)

2. FSM Parameters

Parameter Name Parameter Value

Power Pill Adjacency (Ambush) 5 Nodes Distance (Manhattan)

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan)

Ambush Distance Threshold 5 Nodes Distance (Manhattan)

End Game Distance 4 Nodes Distance (Manhattan)

3. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 32 minutes 6 seconds

Average Time Per Game 15 seconds 15 milliseconds

Longest Time Per Game 46 seconds 36 milliseconds

4. Scoring

Minimum Score Average Score Max Score

500 3823 9510

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

26 115 215

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten

1 6 13

52

5. Monte-Carlo Tree Search Generation

Minimum Generation Time Average Generation Time Maximum Generation Time

109 ms 147 ms 250 ms

53

5.2.2.2 Configuration 2

Test Session ID: session_29EBF1B5F210DD719E950AF2C65002E0

The purpose of this configuration is to determine whether a more in-depth heuristics search by

the MCTS algorithm yields any more positive results than from the previous test. Referring

back to section 2.1 of the literature review, (Samothrakis et al., 2011) mention that the

performance of their agent varied with the UCB1 evaluation method based on the amount of

simulations were conducted.

Therefore, for the configuration in this experiment I aim to alleviate the fixed constraint on

the Max Simulations to something higher and increase the amount of possible layers that there

can be in the tree. We aim to achieve more appropriate low-level direction choices from the

agent in question by enabling for the simulations to be more thorough.

1. MCTS Parameters

Parameter Name Parameter Value

Max Cycles 5

Expansion Threshold 15

Layer Threshold 12

Evaluation Method UCB1

Max Simulations 7 (Fixed Constraint)

2. FSM Parameters

Parameter Name Parameter Value

Power Pill Adjacency (Ambush) 5 Nodes Distance (Manhattan)

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan)

Ambush Distance Threshold 5 Nodes Distance (Manhattan)

End Game Distance 4 Nodes Distance (Manhattan)

3. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 31 minutes 28 seconds 51 milliseconds

Average Time Per Game 14 seconds 89 milliseconds

Longest Time Per Game 37 seconds 4 milliseconds

54

4. Scoring

Minimum Score Average Score Max Score

140 4015 8600

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

14 112 208

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten

0 6 12

5. Monte-Carlo Tree Search Generation

Minimum Generation Time Average Generation Time Maximum Generation Time

171 ms 221 ms 358 ms

55

5.2.2.3 Configuration 3

Test Session ID: session_F96E5588BCC184DCCFA7BA22B460CB07

The same MCTS configuration settings are used this time around as the ones provided within

the first configuration, however the only difference is that this time is that we are making use

of a different method of evaluation for choosing the most optimal direction from the tree.

Referring back to our literature review in section 2.1, we state that (Pepels and Winands,

2012) demonstrated positive results when making use of this formula for generating UCB

scores with the current node (i.e. a simulated game) and its parent’s score.

1. MCTS Parameters

Parameter Name Parameter Value

Max Cycles 5

Expansion Threshold 3

Layer Threshold 7

Evaluation Method UCB-Tuned

Max Simulations 5 (Fixed Constraint)

2. FSM Parameters

Parameter Name Parameter Value

Power Pill Adjacency (Ambush) 5 Nodes Distance (Manhattan)

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan)

Ambush Distance Threshold 5 Nodes Distance (Manhattan)

End Game Distance 4 Nodes Distance (Manhattan)

3. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 27 minutes 64 seconds

Average Time Per Game 13 seconds 10 milliseconds

Longest Time Per Game 42 seconds 48 milliseconds

4. Scoring

Minimum Score Average Score Max Score

280 3035 10230

56

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

28 103 208

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten

0 4 13

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared

0 0 0

5. Monte-Carlo Tree Search Generation

Minimum Generation Time Average Generation Time Maximum Generation Time

124 ms 181 ms 281 ms

57

5.2.2.4 Configuration 4

Test Session ID: session_580C95A11A10AD6853CD4F0E258FC100

Within this configuration we aim to determine whether or not our agent is capable of

returning optimal results if it is able to carry out more simulations during generation of the

MCTS tree. (Pepels and Winands, 2012) demonstrate the UCB-Tuned formula consistently

returns better scoring from the game when the simulation constraint is higher. Based on the

results returned from the previous configurations we expect for there to be a higher latency in

the generation of the tree, however we hope for the max latency to be under the time of 500

ms.

1. MCTS Parameters

Parameter Name Parameter Value

Max Cycles 5

Expansion Threshold 15

Layer Threshold 12

Evaluation Method UCB-Tuned

Max Simulations 25 (Fixed Constraint)

2. FSM Parameters

Parameter Name Parameter Value

Power Pill Adjacency (Ambush) 5 Nodes Distance (Manhattan)

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan)

Ambush Distance Threshold 5 Nodes Distance (Manhattan)

End Game Distance 4 Nodes Distance (Manhattan)

3. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 33 minutes 89 seconds 65 milliseconds

Average Time Per Game 12 seconds 55 milliseconds

Longest Time Per Game 44 seconds 84 milliseconds

4. Scoring

Minimum Score Average Score Max Score

58

160 2705 8160

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

16 91 215

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten

0 4 11

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared

0 0 0

5. Monte-Carlo Tree Search Generation

Minimum Generation Time Average Generation Time Maximum Generation Time

608 ms 680 ms 842 ms

59

5.2.3 Scripted behaviour and Finite State Machine

As stated in section 5.1.2.1.3, with this experiment setup we intend to determine whether or

not there is a significant performance boost when utilising a hand-coded strategic based agent.

3 separate configurations will be applied for testing to determine which set of configurations

are considered ideal for testing. Based on the results outputted from this setup, we will

conduct one final experiment combining the most optimal FSM parameters found from these

configurations with our main implementation.

Configuration 1

Test Session ID: session_79C98964B07899B3A4D61CD07B83F208

1. FSM Parameters

Parameter Name Parameter Value

Flee Distance (Ghost Adjacency) 7 Nodes Distance (Manhattan)

Ambush Distance Threshold 5 Nodes Distance (Manhattan)

End Game Distance 4 Nodes Distance (Manhattan)

Flee Change Distance 5 Nodes Distance (Manhattan)

2. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 1 hour 6 minutes 31 seconds

Average Time Per Game 39 seconds 91 milliseconds

Longest Time Per Game 1 minute 14 seconds 8 milliseconds

3. Scoring

Minimum Score Average Score Maximum Score

460 4646 10370

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

46 150 311

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten

0 6 15

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared

0 0 0

60

Configuration 2

Test Session ID: session_F1970BFDEFCD9E4A073C812C0A50DDB0

1. FSM Parameters

Parameter Name Parameter Value

Ambush Threshold 4 Nodes Distance (Manhattan)

Flee Threshold (Ghost Adjacency) 5 Nodes Distance (Manhattan)

End Game Distance 4 Nodes Distance (Manhattan)

Flee Change Threshold (Return to Wander) 3 Nodes Distance (Manhattan)

2. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 1 hour 2 minutes 38 seconds

Average Time Per Game 37 seconds 48 milliseconds

Longest Time Per Game 1 minute 40 seconds 76 milliseconds

3. Scoring

Minimum Score Average Score Maximum Score

850 4065 14760

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

73 162 393

Minimum Ghost Eaten Average Ghost Eaten Maximum Ghost Eaten

0 5 20

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared

0 0 1

61

5.2.4 Pure MCTS approach

The same MCTS configurations will be applied to the MCTS-based agent as our main

implementation (as stated in Configuration 1). The directions in which the Ms. Pac-Man agent

will head in will be based entirely on the results that are generated from the search-tree. Our

aim with this experimental setup is to determine how effective using the Monte-Carlo Search

Tree is.

Configuration 1

Test Session ID: session_0554FF1D685CB94E47F3D4040CB7030F

1. MCTS Parameters

Parameter Name Parameter Value

Max Cycles 5

Expansion Threshold 3

Layer Threshold 7

Evaluation Method UCB1

Max Simulations 7 (Fixed Constraint)

2. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 1 hour 7 minutes 6 seconds

Average Time Per Game 13 seconds 9 milliseconds

Longest Time Per Game 31 seconds 28 milliseconds

3. Scoring

Minimum Score Average Score Maximum Score

20 1346 3230

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

2 107 213

Minimum Ghosts Eaten Average Ghosts Eaten Maximum Ghosts Eaten

0 0 5

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared

0 0 0

62

4. Monte-Carlo Tree Search Generation

Minimum Generation Time Average Generation Time Maximum Generation Time

93 ms 144 ms 250 ms

63

Configuration 2

Test Session ID: session_694C95EAF7BD03FE1FF9B6C6269FC766

Due to the improved performance noted in our Main Implementation when put against the

UCB1 formula, this configuration aims to determine what the performance of the MCTS

algorithm is like when it makes use of the UCB-Tuned formula.

1. MCTS Parameters

Parameter Name Parameter Value

Max Cycles 5

Expansion Threshold 3

Layer Threshold 7

Evaluation Method UCB-Tuned

Max Simulations 7 (Fixed Constraint)

2. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 1 hour 4 minutes 5 seconds

Average Time Per Game 11 seconds 43 milliseconds

Longest Time Per Game 35 seconds 2 milliseconds

3. Scoring

Minimum Score Average Score Maximum Score

160 1145 3070

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

16 86 158

Minimum Ghosts Eaten Average Ghosts Eaten Maximum Ghosts Eaten

0 0 4

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared

0 0 0

4. Monte-Carlo Tree Search Generation

Minimum Generation Time Average Generation Time Maximum Generation Time

110 ms 186 ms 312 ms

64

Configuration 3

Test Session ID: session_ 4A3E1C7D84159273F027EF0B6C258CD8

To further determine whether a more lenient simulation constraint can improve the

performance of the agent, we reused the same evaluation method as the first configuration and

increase the amount of configurations that it was allowed to do.

1. MCTS Parameters

Parameter Name Parameter Value

Max Cycles 5

Expansion Threshold 5

Layer Threshold 7

Evaluation Method UCB1

Max Simulations 12 (Fixed Constraint)

2. Other Results

Result Name Result Value

Total Games 100

Total Simulated Time 1 hour 4 minutes 8 seconds

Average Time Per Game 13 seconds 93 milliseconds

Longest Time Per Game 42 seconds 76 milliseconds

3. Scoring

Minimum Score Average Score Maximum Score

340 1446 3120

Minimum Pills Eaten Average Pills Eaten Maximum Pills Eaten

34 118 216

Minimum Ghosts Eaten Average Ghosts Eaten Maximum Ghosts Eaten

0 0 3

Minimum Levels Cleared Average Levels Cleared Maximum Levels Cleared

0 0 0

4. Monte-Carlo Tree Search Generation

Minimum Generation Time Average Generation Time Maximum Generation Time

265 ms 325 ms 453 ms

65

5.3 Analysis and Critical Evaluation

5.3.1 Finite State Machine and Scripted Behaviour

Figure 16 - Scoring output from the scripted behaviour agent.

Figure 17 - Pills eaten from the scripted behaviour agent

5.3.1.1 Configuration 1

Immediately we can tell that an AI with scripted controls is capable of generating a high

enough score in the first level of the game with a resulting maximum score of 10000.

Additionally we see that the Ambush & Hunt strategy on average is working appropriately

0

2000

4000

6000

8000

10000

12000

14000

16000

Configuration 1 Configuration 2

Scoring

Maximum Score

Average Score

Minimum Score

0

50

100

150

200

250

300

350

400

450

Configuration 1 Configuration 2

Pills Eaten

Maximum Pills Eaten

Average Pills Eaten

Minimum Pills Eaten

66

due to the average count of ghosts being eaten totalling at 6 per game and the max amount of

ghosts eaten in out of the 100 games is 15. As a result, the greedy-random strategy presented

by (Thompson et al., 2008) for evaluating the best route to take is being applied well

considering that the highest amount of pills consumed is a 311 and on average the agent will

take 164.

5.3.1.2 Configuration 2

In an effort to determine the most optimal hand-coded strategies, we altered the Finite State

Machine parameters slightly to see whether we could obtain any better performance from the

agent should the agent be allowed to leave the Flee state quicker. With the adjustments

applied, the result set returned appears to be very positive with a maximum score of more than

14,000 and on average the agent is scoring approximately 4,000. If we were to compare this

configuration with the former, we can determine that by enabling the agent to get out of the

Flee state early on that the agent is capable of scoring better and losing less. Strangely

however, we noticed that the time in which the agent survives for within the game is

substantially less than the first configuration.

5.3.2 Pure MCTS Approach

Figure 18 - Scoring output for our Pure MCTS agent

0

500

1000

1500

2000

2500

3000

3500

Configuration 1 Configuration 2 Configuration 3

Scoring

Maximum Score

Average Score

Minimum Score

67

Figure 19 - The pill consumption scoring from our Pure MCTS agent

With the results from this test we begin to see some of our concerns mentioned in the

literature review come to light. For instance, when the Pac-Man agent consumes the majority

of the pills at one part of the level, we begin to notice that the returning results from the agent

are consistently 0 meaning that the agent has no particularly focused direction to be headed in.

In comparison to our main implementation, we can see that the agent tends to survive for a

longer period of time when using nothing but the MCTS algorithm inside the maze. This is

consistent with both configurations under this test bed. This leads us to believe that perhaps

by applying the MCTS algorithm in other states there will be a higher rate of survival. For

instance, we would allow for the algorithm to influence the pathfinding measures as stated in

(Tong and Sung, 2010).

5.3.2.1 Configuration 1

We can see immediately that through using a Pure MCTS strategy that the scoring is typically

lower due to the lack of ghosts that were eaten by the agent during the test session. This

consequently suggests that for the most optimal score, there has to be some form of strategic

input in the way that the Ms. Pac-Man agent moves within the maze. Furthermore we can see

that the MCTS algorithm is capable of navigating the maze efficiently based on the pills that

are available through each C-Path. This is demonstrated by our results in which a maximum

of 213 pills out of 250 were consumed and the average round time was approximately 2

minutes.

0

50

100

150

200

250

Configuration 1 Configuration 2

Pills Eaten

Maximum Pills Eaten

Average Pills Eaten

Minimum Pills Eaten

68

During our preliminary tests with this configuration we did notice that the scoring of the trees

that headed towards the direction of edible ghosts didn’t necessarily provide a more rewarding

return for the agent. We believe that this could be something to do in the way that the UCB

scoring formula averages out the scores from child nodes within branches of the MCTS

search tree.

5.3.2.2 Configuration 2

Similar to how we approached the second configuration in the in the testing of the main

implementation, we decided that this time around we wanted to determine how well the UCB-

Tuned formula stated in (Auer et al., 2002) operated on its own. Surprisingly, there was no

drastic performance difference between the usage of this formula and that of the UCB1 that

was used in the previous configuration.

Furthermore, it would appear that when the UCB-tuned formula is used during the back-

propagation process in the generation of the tree that there is on average a slight increase in

latency in contrast to the UCB1 formula.

5.3.3 Main Implementation

Figure 20 - Scoring output for our Main Implementation

0

2000

4000

6000

8000

10000

12000

Configuration 1 Configuration 2 Configuration 3 Configuration 4

Scoring

Maximum Score

Average Score

Minimum Score

69

Figure 21 - Pills eaten by our Main Implementation

5.3.3.1 Configuration 1

Comparing to our previous test conducted with the Scripted Behaviour controlling our agent,

we can see that overall by taking the score into account that the MCTS algorithm combined

with a fixed strategy is returning a score that is better than our agent with purely hand-coded

strategies. Furthermore, we can see that there are safer traversals across the maze considering

that on average more ghosts are being, and at best more are being consumed also.

Although these results are highly positive, it’s worth mentioning that the agent is very much

capable of losing within a short period of time and that there is a larger spread between the

lowest and max score. After evaluating the screenshots that were captured at the end of each

game, it’s fair to say that the agent was caught out frequently when the ghosts performed a

pincer move. As expected, more frequently than not, the Red ghost was responsible for eating

Ms. Pac-Man.

Lastly, we can see that the generation times of the MCTS algorithm are within appropriate

ranges based on the previous work that has been conducted using this algorithm by

(Samothrakis et al., 2011). Referring back to section 2.1 in the Literature Review, if we were

to apply this agent to the original software of Ms. Pac-Man through the means of a screen

grabbing interface, then the response times that our agent is returning would be viable. Should

we wish to pursue this option of agent implementation in the near future, then by using this

particular configuration it would be possible.

0

50

100

150

200

250

Configuration 1 Configuration 2 Configuration 3 Configuration 4

Pills Eaten

Maximum Pills Eaten

Average Pills Eaten

Minimum Pills Eaten

70

5.3.3.2 Configuration 2

Using this configuration, we aimed to see if more appropriate decisions would be made at

each junction within the maze due to a more lenient fixed constraint that was applied to the

generation of the MCTS tree. Having run the tests using the aforementioned configuration, we

noticed that there was no real improvement in performance and the scoring was in fact worse.

This might have been due to the overreaching nature of the MCTS tree. What is meant by this

is that, considering it is simulating so many future game states that are not necessarily

relevant to the immediate decision of Ms. Pacman, it might mean that the agent is selection

turns based on results that are not even relevant.

The statistics regarding the consumption of ghosts during their mortal state is a similar set of

data to the previously used configuration suggesting that the Ambush and Hunt states are

performing just as well. We could argue that the minimum ghosts eaten being 0 is due to the

Wander state causing the agent to get killed before even reaching the power pills within the

maze.

Understandably the MCTS generation times are taking longer time to complete due to the fact

that we are allowing it more time to simulate branches across the tree. With the maximum of

340~ ms to complete the computation of the MCTS, this would still be considered respectable

should we later make the agent engage with a screen-scraping interface for the original

software of the Ms. Pac-Man game.

5.3.3.3 Configuration 3

As we stated within section 2.1, we believed that it would be appropriate to apply various

methods of tree evaluation when enabling our Ms. Pac-Man agent to choose the most optimal

path to head in. Based on the research demonstrated by (Pepels and Winands, 2012) we can

see that there is a higher consistency in better scores when the simulation constraint is a lot

more lenient in comparison to our previous configurations used. Additionally, within the

results they displayed, the UCB-tuned formula demonstrates much better results (refer to Fig.

17).

Having observed the results that we gained from our tests, we can certainly see that we

generate a better maximum score from our agent in contrast to the other configurations of our

main implementation. However, it’s fair to notice that the average is of a lower number thus

displaying that there was a far less consistency in the performance that was outputted from the

71

agent in comparison to the previous sets of configurations. Pill consumption within the maze

is relatively the same.

6.1 Conclusion

6.1.1 AI Performance

Figure 22 - Chart displaying the total survival time of all our agents and their respective configurations

Figure 23 - Graph demonstrating the total sum of ghosts that were consumed by each agent.

0 20 40 60 80 100 120

MI C1

MI C2

MI C3

MI C4

PMCTS C1

PMCTS C2

PMCTS C3

SB C1

SB C2

Survival Time

Average

Maximum

0 5 10 15 20 25

MI C1

MI C2

MI C3

MI C4

PMCTS C1

PMCTS C2

PMCTS C3

SB C1

SB C2

Ghosts Eaten

Min Ghosts Eaten

Average Ghosts Eaten

Max Ghosts Eaten

72

Figure 24 - Pills eaten out of all our agent implementations

Through testing each respective agent, we came across a varied set of results that enabled us

to determine that heuristics best-first search method such as Monte-Carlo Tree Search, is

better off when making use of a fixed-strategy such as our Finite State Machine. This can be

seen in the amount of ghosts that are consumed between our main implementation and that of

a Pure MCTS approach. Referring to Fig. 23, we can see that both the scripted-behaviour

agent and our main implementation are competitive in that they are capable consuming a large

number of ghosts within a game. In a similar sense, if we look at Fig. 24 we can see that our

main implementation was capable of consistently consuming more pills than our Pure MCTS

agent.

This leads us to believe that by making use of fixed strategies with MCTS, it enables our

agent to be substantially more competitive, than if we used MCTS on its own. As discussed

within section 2.3, we mentioned that making use of an Ambush strategy similar to that of

(Thawonmas and Ashida, 2010) would be beneficial in enabling our ghost to acquire more

points. Fortunately as we can see from Fig. 23, this has been largely the case.

In addition, we noticed that when our agent made use of nothing but the MCTS algorithm, the

time in which it survived on average was marginally smaller to that of our main

implementation (refer to Fig. 22). This leads us to believe that making use of the intermediary

Flee state is an effective move for enhancing the time in which it survives for. We assume

that this is due to the fact that for a short period of time the agent will aim to move as far

0 100 200 300 400 500

MI C1

MI C2

MI C3

MI C4

SB C1

SB C2

PMCTS C1

PMCTS C2

PMCTS C3

Pills Eaten

Minimum Pills eaten

Average Pills Eaten

Maximum Pills Eaten

73

away as possible from the nearest ghost before resuming to Wander. This is so that should the

MCTS tree fail to return an accurate state based on the simulation returning different results to

the active game state, then we are able to respond to it appropriately.

More surprisingly, the usage of the Greedy-Random AI (Thompson et al., 2008) demonstrated

that there was significant improvement in pill consumption over our main implementation

which went against our initial expectations. With our implementation of the MCTS algorithm

was intended to navigate the AI within the maze based on the C-Paths that provided the most

rewarding score output for the agent. Instead, the scripting behaviour demonstrated that by

simply counting the available pills in every direction and navigating based on that premise

was sufficient enough, and was even capable of moving onto the next level.

The reason for this may have something to do in the way the agent evaluates potential paths to

take at each direction. Considering that it takes into account the future game states of from

junctions that are not immediately adjacent to the agent, it might force the agent to not take an

otherwise more rewarding path. This could be down to the fact that due to the stochastic way

that the ghosts behave, the random simulations carried out within the generation of the tree

could be rendered irrelevant. This is because the behaviour of the ghosts within simulation of

the tree may not match that of the current game state that the agent is playing in. This relates

to a similar idea presented within section 2.1 of our literature review, in that evolutionary

algorithms are to be consistently thrown off due to the stochastic nature of the ghosts.

Moreover, we can see that by experimenting with the likes of another node evaluation method

such as UCB tuned that we do in fact achieve a worse scoring output. Referring to Fig. 20, we

can see the maximum scoring output of the third configuration of our agent (UCB tuned) is

better than the other configurations however struggling from a lower average. Similarly in the

fourth configuration we are seeing worse performance overall suggesting a similar pattern.

Comparing this to our Pure MCTS agent, we notice that the scoring output is just as weak

when our agent makes use of the UCB-tuned evaluation method enabling us to conclude that

there is no gain through the usage of the formula.

Referring to the first and second configurations used for our main implementation, we noticed

that the scoring outcome was in fact worse when we extended the simulation constraint. This

leads us to conclude that using a smaller expansion of the tree will produce better results. We

believe that this is due to the UCB score from the tree is returning values that are more

74

relevant to immediate game states. Refer to Fig. 20 to see the scoring difference between the

two.

It’s noted as well that out of all of our agent implementations, the agent that made use of

scripted behaviour was the only one that was able to get onto the next level during testing.

From this we can conclude that the Greedy-Random approach specified by (Thompson et al.,

2008), although negligent of adjacent ghosts, is in fact effective in clearing pills within the

maze. This is reaffirmed by the fact that the same agent consumed a maximum of 392 pills

during testing (refer to Fig. 19). Combined with the End Game strategy that our Main

Implementation uses, it makes sense as to why it was capable of progressing onto the next

level. The End Game strategy enables the agent to discover pills that are not immediately

adjacent to it, therefore negating the need for the agent to randomly select a direction should it

not find a pill within any available directions at a junction.

While the scripted behaviour testing implementation appear to demonstrate better

performance overall, there is still a possibility that the MCTS approach can be improved and

eventually exceed that of our scripted agent. The reason we believe this is due to two set of

results returned by our Main Implementation agent. The first configuration displayed better

performance than that of second configuration purely because of subtle differences in the

parameters used for the MCTS.

We believe that if the MCTS parameters are adjusted accordingly through further

investigation that there is the possibility that we could achieve an agent that can compete that

of our Scripted-Behaviour agent. The problem lies in carrying out more testing with various

parameters for both the FSM and the generation of the MCTS. It is noted however that we are

hugely constrained by how many simulations we can carry out on the tree with our current

implementation having reviewed the results for Configuration 4 of our main implementation.

This constraint could perhaps be alleviated through further improvements with our choice of

simulator.

If we were to observe the aims and objectives that were outlined within section 1.1, it’s fair to

note that we have successfully developed a high scoring agent that combines the functionality

of a fixed-strategy approach along with the usage of a heuristics based search method.

Additionally we can see that from the returned results that the AI is capable of generating

high-level decisions within a reasonable time frame when using the appropriate parameters.

Admittedly, the current performance of the agent lacks in comparison to that of our pure finite

75

state machine solution. It’s worth noting however, should the parameters used for the MCTS

simulation be adjusted through iterative testing, we are confident that it would produce a more

competitive agent for our main implementation.

We have noticed that the AIs performance in terms of how fast it can generate a strategy

through MCTS could be improved. While using a fixed constraint of 15 simulations we are

seeing latency on average reaching 250 milliseconds. Having investigated this during the

preliminary stages of testing, we concluded that it was mostly due to the way that the

simulator was cloning objects.

To conclude, we can see that a competitive and high-scoring agent emerges through the usage

of both MCTS and Finite State Machines, however both the application of the MCTS

algorithm and the configuration behind it could be improved significantly. For instance, we

can see between the two UCB1 configurations that were used for our main implementation

that they return different results. This leads me to believe that with further tweaking we can

obtain even more competitive parameters leading to better performance. The scores

demonstrated in the second configuration used for the scripted agent displayed a better min

and max scores out of the 100 that were played in total. This means that in regards to our

objectives, we were unable to successfully create a hybrid agent results in better performance

to that of a scripted agent overall. The scripted-behaviour agent is based on the work

demonstrated by (Thompson et al., 2008). We do recognize however that our scripted

behaviour agent made use of several more states and methods to achieve the score that it did.

However, the results still state that it is capable of generating better results than that of our

main implementation.

Although we have concluded that it is an arduous task to select what the ideal configurations

between the two combined methods of AI behaviour are, we believe it is worth pursuing. This

is demonstrated by the performance improvements displayed over the Pure MCTS approach

when a hard-coded strategy is applied. We should also investigate the possibility of

implementing the MCTS algorithm in other states so that we can use its heuristics for other

purposes. As stated in (Browne et al., 2012), there are various ways in which the result output

of a search-tree can be evaluated and such this requires further investigation before we rule

out MCTS entirely. Potential usage of the algorithm in other states could include the likes of

biasing the reward output to favour paths with power pills, or simply if there are any pills to

begin with (End Game).

76

7. Future Work

7.1 Agent Improvements

7.1.1 Application of MCTS

After carrying out the experimentation runs, we noticed that the usage of the UCB-tuned

algorithm did not display any real beneficial advantage to node evaluation within the tree.

This may have been largely down to how our tree was structured, as mentioned by (Pepels

and Winands, 2012) to utilise the appropriate evaluation function would require the correct

structure of the tree and how it is expanded (min-max etc.). Nonetheless, the end of game

results shows that there was no improvement in the score that was achieved by the agent when

used on its own. In the future, should we decide to proceed with this evaluation formula

again, we would have to ensure that the generation of the tree was done so in such a way that

would enable for such an evaluation formula to work.

We also believe, in the future, that this algorithm could be used as method of danger detection

rather than a means of directing the agent through the maze. We relate this idea to what was

presented by (Tong et al., 2011), in which they demonstrated that generating the shortest path

to the farthest pill within the maze whilst conducting shallow MCTS searches that they gained

promising results from their agent. In context to our main implementation, the MCTS

algorithm could influence the generated path of the agent by returning whether or not the

current direction is dangerous. If it was discovered to be dangerous, then we would re-plan

and find an alternative route.

The reason that we do this is because of the way that the current scripted behaviour works in

the End Game state. Currently it is simply reactive to the radius in which the ghost is in

comparison to the agent. This means that although the ghost could be close, it doesn’t

necessarily mean that it is of a threat to the agent. For instance, if we refer to section 5.1.5 in

regards to the ghost behaviour within our simulator solution, we notice that the behaviour of

the brown ghost is completely stochastic. This means that if our agent was adjacent to the

Brown ghost, it would erroneously change its currently active state to fleeing when the ghost

wouldn’t necessarily be approaching the agent. Making use of a shallow MCTS simulation

would counter our previous concerns with the algorithm. An example is that it would provide

us with relatively accurate results, as the simulation would return what would be likely to

occur in immediate future game states. Due to the shallow nature of tree simulation, we can

be left assured that the future simulated states would be considered relevant to the direction

77

that our agent is heading in. The reason for this is that there would be a smaller possibility

that the respective ghost’s behaviour (refer to section 5.1.5) will change drastically a few

moves ahead from the agent’s current position.

7.1.1.1 Improving the cloning of game states

We noticed that during the simulation of the MCTS algorithm that one of the major

bottlenecks for the algorithm was the way in which the game state was being cloned. In order

for the MCTS algorithm to operate, the current game state has to be copied numerous times to

be simulated on. Unfortunately, due to the way that the original simulator source code works,

it meant that it originally took a long period of time to deep-copy the game state. Due to the

way that the GameState object is developed, the maze information of the other levels within

the game are cloned a long with the one that is being actively used.

This was originally considered costly as we were never actively making use of the other levels

data, so it unnecessary for it to be cloned. In the end, we attempted to resolve the issue by

only ever cloning the map that was being actively used and the next map within the game.

This is so that the level changes to the next during the simulation of the MCTS tree, then the

data is available for it to use. It is important to note that it is essential for this information to

be available considering that the level progression reward has to be applied to the MCTS

evaluation. We feel that this could be optimised further considering that during our tests we

managed to hit 500 ms when using the UCB-Tuned evaluation method, with a fixed constraint

of 25 simulations.

Like many other AI controller interfaces for Ms. Pac-Man agents, our simulator through the

use of discretization, presents the Ms. Pac-Man maze layout as a series of nodes (Fitzgerald

and Congdon, 2009). This is the same for the simulator that we used, except for each node

within the game also contains a reference to the 4 adjacent nodes to its position in the maze.

This is a problem during the cloning state, considering that it will automatically attempt to

clone the 4 adjacent nodes as the Node object holds a reference to those within its class

definition. This then initially lead to a stack overflow issue when attempting to clone the

entire game state. In the end, we prevented this by simply storing a 2D array of enumerable

values that displays the state of a given node in our graph.

In the future we aim to refactor the simulator that we use by changing how the nodes are

represented in the maze so that there isn’t a similar time consuming issue. Moreover, we aim

to speed up the rate that the simulator clones the game state object by removing the amount of

78

objects that it has to copy, and simply copying vital information required for the simulation.

Upon achieving this, we may be able to see some further improvements in terms of lower

latency and a less strict constraint for our simulation threshold.

7.1.2 Counter-acting Pincer Moves

Upon evaluating the screenshots that were generated

through testing, we noticed that across all our testing

implementations our agent was frequently losing when a

pincer move was formed. We noticed that this was

occurring mostly within the corners of the maze, which is

similar to what (Tong and Sung, 2010) stated when they

introduced the idea of a danger map for dangerous parts

of the maze. We believe that this could be in conflict with

the aforementioned Ambush strategy that we aimed to

implement. The flaw in the Ambush strategy is that the

agent will remain stationary within the corner of the

maze until a ghost is close. This could suggest that using

a pure Ambush strategy without any kind of foresight might cause problems for the agent

should we pursue this strategy feature. We could implement a more in depth Ambush

algorithm by taking into consideration the fact that at least two of the ghost move in a similar

manner (Red and Pink). In addition, we may have to use a more effective means of allowing

our agent to retreat from a dangerous situation. Currently it makes use of the Flee state that

simply states that the agent should move in the opposite direction to the ghost. This means

that eventually the agent could end up in a no win situation if we fail to at least predict what

could happen should the agent retreat down a certain path.

Should we proceed to use MCTS in our future work, we most certainly will have to take into

account the possibility of this occurring again and what effective ways could be utilized with

our current methodology to counter-act it. In addition, we may have to use a more effective

means of allowing our agent to retreat from a dangerous situation. Currently it makes use of

the Flee state that simply states that the agent should move in the opposite direction to the

ghost. This means that eventually the agent could end up in an awkward situation if we fail to

at least predict what could happen should the agent retreat down a certain path.

Figure 25 - Ms. Pac-Man being caught out

by a pincer move in our Configuration 2 of

Main Implementation

79

7.2 Re-evaluating our tools

Revisiting the problems that were described within the literature review, the simulator most

definitely offered a large sense of freedom and flexibility. This was demonstrated when it

came to enabling us to modify the values that we required to change such as temporarily

changing the behaviour of the ghosts. Furthermore it also meant that we had a fully

configurable test bed for testing the MCTS algorithm with. The main issue that we faced

however, when it came to the implementation of the MCTS algorithm with our own simulator

was the inability to accurately render the screen while expensive computations were being

done during each tick. While we adjusted settings for the tree growth and evaluation within

our tests to determine where the CPU bottleneck was, we noticed that there were no real

plausible differences regardless of the changes that we made. We hope that in the near future

should we approach this method again that we would perhaps develop a simulator that utilises

a graphics rendering API that places the work load onto the GPU such as OpenGL or DirectX.

The reason we believe that this would be a suitable idea would be due to the way that the

current implementation works now. Our current simulator uses the likes of GDI+ and

WinForms which in most instances utilises the CPU for its graphical processing (Microsoft,

2012). As mentioned within section 2.1, we detailed the costly nature of the MCTS algorithm

on the CPU and therefore combining with additional strain of rendering would explain the

current issues we are having. This would include the visual artefacts such as inconsistent tick

rates in the rendering of the graphical buffer that we were experiencing. This meant that once

MCTS calculations had completed, any instructions on the call stack for rendering the

simulator to the screen would be completed all at once. Presuming that we wish to remain

with the functionality of the C# programming language, we could pursue the possibility of

using the now deprecated by functional XNA game framework, or a more modern and

managed interface for DirectX such as SharpDX (Mutel, 2010).

7.3 Usage of MCTS with other games

As we can see from our research, the application of MCTS is very much ideal to the game of

Ms. Pac-Man as the future moves can be consolidated to the AI having to choose between 4

different directions in which the agent could move in. Likewise, this has been previously

demonstrated with games such as Go where equally there is a high branching factor of

decisions that must be evaluated rapidly at each tick (Browne et al., 2012). Our concern with

the usage of the algorithm in other games is that the game state would have to be discretized

in a way that would be appropriate for MCTS simulations. For instance, if we were to

80

consider a game based in an open world and 3D environment, there would be substantially

more data to consider and it would be harder to determine what parts of the game state we

would simulate. No longer is the agent then required to move in simply 4 directions but

instead depending on the game, the agent may have to consider a variety of other factors that

would have to be simulated in order to make appropriate decisions at each tick. Fortunately

within the game of Ms. Pac-Man the process of doing this is rather straight forward as we can

consider each junction within the maze a point of decision for the agent. This then depends on

how appropriately the environment would be discretized so that once simulation is completed,

the outputted results become dependable.

7.4 Closing Statement

Referring back to section 1.1 of our aims and objectives, we can say with certainty that we

have successfully applied the Monte-Carlo Tree Search algorithm with the strategy of a finite

state machine. Having investigated the current literature surrounding the topic of MCTS, it’s

evident that there are large advancements in the area, with countless methods of how the

algorithm can be applied. However, while demonstrating positive results through our testing,

we unfortunately can still conclude that it does not output the same level of performance as

that of an agent which uses purely scripted behaviour. Through the implementation of the

agent we recognized that while responding appropriately to the ghosts in the maze, there were

certain instances in which it would fail to detect danger down C-Paths adjacent to its position.

We are lead to believe at this stage that it is down to several reasons. The first being the

behaviour of the ghosts cannot be depended upon during the simulation of the tree due to their

stochastic nature as stated before in section 1. Regardless of how many times the tree can be

simulated to conclude the reward of a given path in the maze, there is always the possibility

that the ghosts will behave differently within the current game state.

The MCTS algorithm is perhaps still a viable method should it be applied to our agent

differently. Referring to Fig. 23, the reason that our main implementation was capable of

eating ghosts at all was because it was not depending on the path generation produced by the

MCTS. In our opinion, it would be better to make use of the approximations generated by

MCTS as a supplement to our agents understanding of the environment rather than a direct

form of navigation.

81

8. Bibliography & References

Auer, P., Cesa-Bianchi, N., Fischer, P., 2002. Finite-time Analysis of the Multiarmed Bandit
Problem. Mach. Learn. 47, 235–256.

Baier, H., Drake, P.D., Dec. The Power of Forgetting: Improving the Last-Good-Reply Policy
in Monte Carlo Go. IEEE Transactions on Computational Intelligence and AI in
Games 2, 303–309.

Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S., 2012. A Survey of Monte Carlo
Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in
Games 4, 1 –43.

De Bonet, J., 2006. Learning to Play Pacman using Incremental Reinforcement Learning
[WWW Document]. Learning to Play Pacman using Incremental Reinforcement
Learning. URL http://www.debonet.com/Research/Learning/PacMan/

Fitzgerald, A., Congdon, C.B., 2009. RAMP: A rule-based agent for Ms. Pac-Man, in: IEEE
Congress on Evolutionary Computation, 2009. CEC ’09. Presented at the IEEE
Congress on Evolutionary Computation, 2009. CEC ’09, pp. 2646 –2653.

Flensbank, J., Yannakakis, G., 2008. Ms. Pacman Competition [WWW Document]. Ms.
Pacman Competition. URL http://mspacmanai.codeplex.com/releases/view/15706

Gallagher, M., Ledwich, M., 2007. Evolving Pac-Man Players: Can We Learn from Raw
Input?, in: IEEE Symposium on Computational Intelligence and Games, 2007. CIG
2007. Presented at the IEEE Symposium on Computational Intelligence and Games,
2007. CIG 2007, pp. 282 –287.

Gallagher, M., Ryan, A., 2003. Learning to play Pac-Man: an evolutionary, rule-based
approach, in: The 2003 Congress on Evolutionary Computation, 2003. CEC ’03.
Presented at the The 2003 Congress on Evolutionary Computation, 2003. CEC ’03,
pp. 2462 – 2469 Vol.4.

Galván-López, E., Swafford, J.M., O’Neill, M., Brabazon, A., 2010. Evolving a Ms. PacMan
Controller Using Grammatical Evolution, in: Chio, C., Cagnoni, S., Cotta, C., Ebner,
M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M.,
Togelius, J., Yannakakis, G.N. (Eds.), Applications of Evolutionary Computation.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 161–170.

Handa, H., Isozaki, M., 2008. Evolutionary fuzzy systems for generating better Ms.PacMan
players, in: IEEE International Conference on Fuzzy Systems, 2008. FUZZ-IEEE
2008. (IEEE World Congress on Computational Intelligence). Presented at the IEEE
International Conference on Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World
Congress on Computational Intelligence), pp. 2182 –2185.

Ikehata, N., Ito, T., 2011. Monte-Carlo Tree Search in Ms. Pac-Man, in: Computational
Intelligence and Games (CIG), 2011 IEEE Conference On. pp. 39–46.

James, N.-K., n.d. Json.NET [WWW Document]. Json.NET. URL
http://james.newtonking.com/pages/json-net.aspx

Koza, J.R., 1992. Genetic programming: on the programming of computers by means of
natural selection. MIT Press, Cambridge, MA, USA.

Krause, E.F., 1987. Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Dover
Publications.

Microsoft, 2012. Comparing Direct2D and GDI Hardware Acceleration [WWW Document].
Comparing Direct2D and GDI Hardware Acceleration. URL
http://msdn.microsoft.com/en-
gb/library/windows/desktop/ff729480(v=vs.85).aspx#gdi_and_direct2d_hardware_acc
eleration

Mutel, A., 2010. SharpDX [WWW Document]. SharpDX. URL http://sharpdx.org (accessed
3.5.13).

82

Pepels, T., Winands, M.H.M., 2012. Enhancements for Monte-Carlo Tree Search in Ms Pac-
Man, in: 2012 IEEE Conference on Computational Intelligence and Games (CIG).
Presented at the 2012 IEEE Conference on Computational Intelligence and Games
(CIG), pp. 265 –272.

Pittman, P., 2011. The Pac-Man Dossier [WWW Document]. The Pac-Man Dossier. URL
http://home.comcast.net/~jpittman2/pacman/pacmandossier.html#CH4_Blinky
(accessed 4.21.13).

Robles, D., Lucas, S.M., 2009. A simple tree search method for playing Ms. Pac-Man, in:
IEEE Symposium on Computational Intelligence and Games, 2009. CIG 2009.
Presented at the IEEE Symposium on Computational Intelligence and Games, 2009.
CIG 2009, pp. 249 –255.

Samothrakis, S., Robles, D., Lucas, S., 2011. Fast Approximate Max-n Monte Carlo Tree
Search for Ms Pac-Man. IEEE Transactions on Computational Intelligence and AI in
Games 3, 142 –154.

Szita, I., Lõrincz, A., 2007. Learning to play using low-complexity rule-based policies:
illustrations through Ms. Pac-Man. J. Artif. Int. Res. 30, 659–684.

Thawonmas, R., Ashida, T., 2010. Evolution strategy for optimizing parameters in Ms Pac-
Man controller ICE Pambush 3, in: 2010 IEEE Symposium on Computational
Intelligence and Games (CIG). Presented at the 2010 IEEE Symposium on
Computational Intelligence and Games (CIG), pp. 235 –240.

Thompson, T., McMillan, L., Levine, J., Andrew, A., 2008. An evaluation of the benefits of
look-ahead in Pac-Man, in: Computational Intelligence and Games, 2008. CIG ’08.
IEEE Symposium On. Presented at the Computational Intelligence and Games, 2008.
CIG ’08. IEEE Symposium On, pp. 310 –315.

Tong, B.K.-B., Ma, C.M., Sung, C.W., 2011. A Monte-Carlo approach for the endgame of
Ms. Pac-Man, in: 2011 IEEE Conference on Computational Intelligence and Games
(CIG). Presented at the 2011 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 9 –15.

Tong, B.K.B., Sung, C.W., 2010. A Monte-Carlo approach for ghost avoidance in the Ms.
Pac-Man game, in: Games Innovations Conference (ICE-GIC), 2010 International
IEEE Consumer Electronics Society’s. Presented at the Games Innovations
Conference (ICE-GIC), 2010 International IEEE Consumer Electronics Society’s, pp.
1 –8.

83

9. Appendices

